A Risk Comparison of Ordinary Least Squares vs Ridge Regression

Paramveer S. Dhillon
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
Dean P. Foster
FOSTER@WHARTON.UPENN.EDU
Department of Statistics
Wharton School, University of Pennsylvania
Philadelphia, PA 19104, USA
Sham M. Kakade
SKAKADE@MICROSOFT.COM
Microsoft Research
One Memorial Drive
Cambridge, MA 02142, USA
Lyle H. Ungar
UNGAR@CIS.UPENN.EDU
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA

Editor: Gabor Lugosi

Abstract

We compare the risk of ridge regression to a simple variant of ordinary least squares, in which one simply projects the data onto a finite dimensional subspace (as specified by a principal component analysis) and then performs an ordinary (un-regularized) least squares regression in this subspace. This note shows that the risk of this ordinary least squares method (PCA-OLS) is within a constant factor (namely 4) of the risk of ridge regression (RR).

Keywords: risk inflation, ridge regression, pca

1. Introduction

Consider the fixed design setting where we have a set of n vectors $X=\left\{X_{i}\right\}$, and let \mathbf{X} denote the matrix where the $i^{t h}$ row of \mathbf{X} is X_{i}. The observed label vector is $Y \in \mathbb{R}^{n}$. Suppose that:

$$
Y=\mathbf{X} \boldsymbol{\beta}+\varepsilon,
$$

where ε is independent noise in each coordinate, with the variance of ε_{i} being σ^{2}.
The objective is to learn $\mathbb{E}[Y]=\mathbf{X} \boldsymbol{\beta}$. The expected loss of a vector β estimator is:

$$
L(\boldsymbol{\beta})=\frac{1}{n} \mathbb{E}_{\mathbb{Y}}\left[\|Y-\mathbf{X} \boldsymbol{\beta}\|^{2}\right],
$$

Let $\hat{\beta}$ be an estimator of β (constructed with a sample Y). Denoting

$$
\boldsymbol{\Sigma}:=\frac{1}{n} \mathbf{X}^{T} \mathbf{X}
$$

we have that the risk (i.e., expected excess loss) is:

$$
\operatorname{Risk}(\hat{\boldsymbol{\beta}}):=\mathbb{E}_{\hat{\beta}}[L(\hat{\boldsymbol{\beta}})-L(\boldsymbol{\beta})]=\mathbb{E}_{\hat{\beta}}\|\hat{\boldsymbol{\beta}}-\beta\|_{\boldsymbol{\Sigma}}^{2}
$$

where $\|x\|_{\boldsymbol{\Sigma}}=x^{\top} \boldsymbol{\Sigma} x$ and where the expectation is with respect to the randomness in Y.
We show that a simple variant of ordinary (un-regularized) least squares always compares favorably to ridge regression (as measured by the risk). This observation is based on the following bias variance decomposition:

$$
\begin{equation*}
\operatorname{Risk}(\hat{\beta})=\underbrace{\mathbb{E}\|\hat{\beta}-\bar{\beta}\|_{\Sigma}^{2}}_{\text {Variance }}+\underbrace{\|\bar{\beta}-\beta\|_{\Sigma}^{2}}_{\text {Prediction Bias }}, \tag{1}
\end{equation*}
$$

where $\bar{\beta}=\mathbb{E}[\hat{\beta}]$.

1.1 The Risk of Ridge Regression (RR)

Ridge regression or Tikhonov Regularization (Tikhonov, 1963) penalizes the ℓ_{2} norm of a parameter vector β and "shrinks" it towards zero, penalizing large values more. The estimator is:

$$
\hat{\beta}_{\lambda}=\underset{\beta}{\operatorname{argmin}}\left\{\|Y-\mathbf{X} \beta\|^{2}+\lambda\|\beta\|^{2}\right\} .
$$

The closed form estimate is then:

$$
\hat{\boldsymbol{\beta}}_{\lambda}=(\boldsymbol{\Sigma}+\lambda \mathbf{I})^{-1}\left(\frac{1}{n} \mathbf{X}^{T} Y\right) .
$$

Note that

$$
\hat{\boldsymbol{\beta}}_{0}=\hat{\boldsymbol{\beta}}_{\lambda=0}=\underset{\beta}{\operatorname{argmin}}\left\{\|Y-\mathbf{X} \boldsymbol{\beta}\|^{2}\right\},
$$

is the ordinary least squares estimator.
Without loss of generality, rotate \mathbf{X} such that:

$$
\boldsymbol{\Sigma}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right),
$$

where the λ_{i} 's are ordered in decreasing order.
To see the nature of this shrinkage observe that:

$$
\left[\hat{\beta}_{\lambda}\right]_{j}:=\frac{\lambda_{j}}{\lambda_{j}+\lambda}\left[\hat{\boldsymbol{\beta}}_{0}\right]_{j},
$$

where $\hat{\beta}_{0}$ is the ordinary least squares estimator.
Using the bias-variance decomposition, (Equation 1), we have that:

Lemma 1

$$
\operatorname{Risk}\left(\hat{\beta}_{\lambda}\right)=\frac{\sigma^{2}}{n} \sum_{j}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}\right)^{2}+\sum_{j} \beta_{j}^{2} \frac{\lambda_{j}}{\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2}} .
$$

The proof is straightforward and is provided in the appendix.

2. Ordinary Least Squares with PCA (PCA-OLS)

Now let us construct a simple estimator based on λ. Note that our rotated coordinate system where Σ is equal to $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ corresponds the PCA coordinate system.

Consider the following ordinary least squares estimator on the "top" PCA subspace - it uses the least squares estimate on coordinate j if $\lambda_{j} \geq \lambda$ and 0 otherwise

$$
\left[\hat{\boldsymbol{\beta}}_{P C A, \lambda}\right]_{j}=\left\{\begin{array}{rl}
{\left[\hat{\boldsymbol{\beta}}_{0}\right]_{j}} & \text { if } \lambda_{j} \geq \lambda \\
0 & \text { otherwise }
\end{array} .\right.
$$

The following claim shows this estimator compares favorably to the ridge estimator (for every $\boldsymbol{\lambda}$)no matter how the λ is chosen, for example, using cross validation or any other strategy.

Our main theorem (Theorem 2) bounds the Risk Ratio/Risk Inflation ${ }^{1}$ of the PCA-OLS and the RR estimators.

Theorem 2 (Bounded Risk Inflation) For all $\lambda \geq 0$, we have that:

$$
0 \leq \frac{\operatorname{Risk}\left(\hat{\beta}_{P C A, \lambda}\right)}{\operatorname{Risk}\left(\hat{\beta}_{\lambda}\right)} \leq 4,
$$

and the left hand inequality is tight.
Proof Using the bias variance decomposition of the risk we can write the risk as:

$$
\operatorname{Risk}\left(\hat{\beta}_{P C A, \lambda}\right)=\frac{\sigma^{2}}{n} \sum_{j} \mathbb{1}_{\lambda_{j} \geq \lambda}+\sum_{j: \lambda_{j}<\lambda} \lambda_{j} \beta_{j}^{2} .
$$

The first term represents the variance and the second the bias.
The ridge regression risk is given by Lemma 1 . We now show that the $j^{\text {th }}$ term in the expression for the PCA risk is within a factor 4 of the $j^{\text {th }}$ term of the ridge regression risk. First, let's consider the case when $\lambda_{j} \geq \lambda$, then the ratio of $j^{\text {th }}$ terms is:

$$
\frac{\frac{\sigma^{2}}{n}}{\frac{\sigma^{2}}{n}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}\right)^{2}+\beta_{j}^{2} \frac{\lambda_{j}}{\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2}}} \leq \frac{\frac{\sigma^{2}}{n}}{\frac{\sigma^{2}}{n}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}\right)^{2}}=\left(1+\frac{\lambda}{\lambda_{j}}\right)^{2} \leq 4
$$

Similarly, if $\lambda_{j}<\lambda$, the ratio of the $j^{\text {th }}$ terms is:

$$
\frac{\lambda_{j} \beta_{j}^{2}}{\frac{\sigma^{2}}{n}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}\right)^{2}+\beta_{j}^{2} \frac{\lambda_{j}}{\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2}}} \leq \frac{\lambda_{j} \beta_{j}^{2}}{\frac{\lambda_{j} \beta_{j}^{2}}{\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2}}}=\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2} \leq 4 .
$$

Since, each term is within a factor of 4 the proof is complete.

It is worth noting that the converse is not true and the ridge regression estimator (RR) can be arbitrarily worse than the PCA-OLS estimator. An example which shows that the left hand inequality is tight is given in the Appendix.

1. Risk Inflation has also been used as a criterion for evaluating feature selection procedures (Foster and George, 1994).

3. Experiments

First, we generated synthetic data with $p=100$ and varying values of $n=\{20,50,80,110\}$. The data was generated in a fixed design setting as $Y=\mathbf{X} \beta+\varepsilon$ where $\varepsilon_{i} \sim \mathcal{N}(0,1) \quad \forall i=1, \ldots, n$. Furthermore, $\mathbf{X}_{n \times p} \sim \operatorname{MVN}(\mathbf{0}, \mathbf{I})$ where $\operatorname{MVN}(\mu, \boldsymbol{\Sigma})$ is the Multivariate Normal Distribution with mean vector μ, variance-covariance matrix $\boldsymbol{\Sigma}$ and $\beta_{j} \sim \mathcal{N}(0,1) \forall j=1, \ldots, p$.

The results are shown in Figure 1. As can be seen, the risk ratio of PCA (PCA-OLS) and ridge regression (RR) is never worse than 4 and often its better than 1 as dictated by Theorem 2.

Next, we chose two real world data sets, namely USPS $(\mathrm{n}=1500, \mathrm{p}=241)$ and BCI $(\mathrm{n}=400$, $\mathrm{p}=117$). ${ }^{2}$

Since we do not know the true model for these data sets, we used all the n observations to fit an OLS regression and used it as an estimate of the true parameter β. This is a reasonable approximation to the true parameter as we estimate the ridge regression (RR) and PCA-OLS models on a small subset of these observations. Next we choose a random subset of the observations, namely $0.2 \times p, 0.5 \times p$ and $0.8 \times p$ to fit the ridge regression (RR) and PCA-OLS models.

The results are shown in Figure 2. As can be seen, the risk ratio of PCA-OLS to ridge regression (RR) is again within a factor of 4 and often PCA-OLS is better, that is, the ratio <1.

4. Conclusion

We showed that the risk inflation of a particular ordinary least squares estimator (on the "top" PCA subspace) is within a factor 4 of the ridge estimator. It turns out the converse is not true - this PCA estimator may be arbitrarily better than the ridge one.

Appendix A.

Proof of Lemma 1. We analyze the bias-variance decomposition in Equation 1. For the variance,

$$
\begin{aligned}
\mathbb{E}_{Y}\left\|\hat{\boldsymbol{\beta}}_{\lambda}-\bar{\beta}_{\lambda}\right\|_{\Sigma}^{2} & =\sum_{j} \lambda_{j} \mathbb{E}_{Y}\left(\left[\hat{\beta}_{\lambda}\right]_{j}-\left[\bar{\beta}_{\lambda}\right]_{j}\right)^{2} \\
& =\sum_{j} \frac{\lambda_{j}}{\left(\lambda_{j}+\lambda\right)^{2}} \frac{1}{n^{2}} \mathbb{E}\left[\sum_{i=1}^{n}\left(Y_{i}-\mathbb{E}\left[Y_{i}\right]\right)\left[X_{i}\right]_{j} \sum_{i^{\prime}=1}^{n}\left(Y_{i}^{\prime}-\mathbb{E}\left[Y_{i}^{\prime}\right]\right)\left[X_{i}^{\prime}\right]_{j}\right] \\
& =\sum_{j} \frac{\lambda_{j}}{\left(\lambda_{j}+\lambda\right)^{2}} \frac{\sigma^{2}}{n} \sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)\left[X_{i}\right]_{j}^{2} \\
& =\sum_{j} \frac{\lambda_{j}}{\left(\lambda_{j}+\lambda\right)^{2}} \frac{\sigma^{2}}{n} \sum_{i=1}^{n}\left[X_{i}\right]_{j}^{2} \\
& =\frac{\sigma^{2}}{n} \sum_{j} \frac{\lambda_{j}^{2}}{\left(\lambda_{j}+\lambda\right)^{2}} .
\end{aligned}
$$

2. The details about the data sets can be found here: http://olivier.chapelle.cc/ssl-book/benchmarks.html.

Figure 1: Plots showing the risk ratio as a function of λ, the regularization parameter and n, for the synthetic data set. $\mathrm{p}=100$ in all the cases. The error bars correspond to one standard deviation for 100 such random trials.

Figure 2: Plots showing the risk ratio as a function of λ, the regularization parameter and n, for two real world data sets (BCI and USPS-top to bottom).

Similarly, for the bias,

$$
\begin{aligned}
\left\|\bar{\beta}_{\lambda}-\beta\right\|_{\Sigma}^{2} & =\sum_{j} \lambda_{j}\left(\left[\bar{\beta}_{\lambda}\right]_{j}-[\beta]_{j}\right)^{2} \\
& =\sum_{j} \beta_{j}^{2} \lambda_{j}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}-1\right)^{2} \\
& =\sum_{j} \beta_{j}^{2} \frac{\lambda_{j}}{\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2}},
\end{aligned}
$$

which completes the proof.

The risk for $R R$ can be arbitrarily worse than the PCA-OLS estimator.
Consider the standard OLS setting described in Section 1 in which \mathbf{X} is $n \times p$ matrix and Y is a $n \times 1$ vector.

Let $\mathbf{X}=\operatorname{diag}(\sqrt{1+\alpha}, 1, \ldots, 1)$, then $\mathbf{\Sigma}=\mathbf{X}^{\top} \mathbf{X}=\operatorname{diag}(1+\alpha, 1, \ldots, 1)$ for some $(\alpha>0)$ and also choose $\beta=[2+\alpha, 0, \ldots, 0]$. For convenience let's also choose $\sigma^{2}=n$.

Then, using Lemma 1, we get the risk of RR estimator as

$$
\operatorname{Risk}\left(\hat{\boldsymbol{\beta}}_{\lambda}\right)=(\underbrace{\left(\frac{1+\alpha}{1+\alpha+\lambda}\right)^{2}}_{\mathrm{I}}+\underbrace{\frac{(p-1)}{(1+\lambda)^{2}}}_{\mathrm{II}})+\underbrace{(2+\alpha)^{2} \times \frac{(1+\alpha)}{\left(1+\frac{1+\alpha}{\lambda}\right)^{2}}}_{\mathrm{III}} .
$$

Let's consider two cases

- Case 1: $\lambda<(p-1)^{1 / 3}-1$, then $I I>(p-1)^{1 / 3}$.
- Case 2: $\lambda>1$, then $1+\frac{1+\alpha}{\lambda}<2+\alpha$, hence $I I I>(1+\alpha)$.

Combining these two cases we get $\forall \lambda, \operatorname{Risk}\left(\hat{\boldsymbol{\beta}}_{\lambda}\right)>\min \left((p-1)^{1 / 3},(1+\alpha)\right)$. If we choose p such that $p-1=(1+\alpha)^{3}$, then $\operatorname{Risk}\left(\hat{\beta}_{\lambda}\right)>(1+\alpha)$.

The PCA-OLS risk (From Theorem 2) is:

$$
\operatorname{Risk}\left(\hat{\beta}_{P C A, \lambda}\right)=\sum_{j} \mathbb{1}_{\lambda_{j} \geq \lambda}+\sum_{j: \lambda_{j}<\lambda} \lambda_{j} \beta_{j}^{2} .
$$

Considering $\lambda \in(1,1+\alpha)$, the first term will contribute 1 to the risk and rest everything will be 0 . So the risk of PCA-OLS is 1 and the risk ratio is

$$
\frac{\operatorname{Risk}\left(\hat{\beta}_{P C A, \lambda}\right)}{\operatorname{Risk}\left(\hat{\beta}_{\lambda}\right)} \leq \frac{1}{(1+\alpha)}
$$

Now, for large α, the risk ratio ≈ 0.

References

D. P. Foster and E. I. George. The risk inflation criterion for multiple regression. The Annals of Statistics, pages 1947-1975, 1994.
A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4, pages 501-504, 1963.

