2008 Eighth IEEE International Conference on Data Mining

Efficient Feature Selection in the Presence of Multiple Feature Classes

Paramveer S. Dhillon
CIS
University of Pennsylvania
pasingh@seas.upenn.edu

Abstract

We present an information theoretic approach to feature
selection when the data possesses feature classes. Feature
classes are pervasive in real data. For example, in gene
expression data, the genes which serve as features may be
divided into classes based on their membership in gene fam-
ilies or pathways. When doing word sense disambigua-
tion or named entity extraction, features fall into classes
including adjacent words, their parts of speech, and the
topic and venue of the document the word is in. When pre-
dictive features occur predominantly in a small number of
feature classes, our information theoretic approach signifi-
cantly improves feature selection. Experiments on real and
synthetic data demonstrate substantial improvement in pre-
dictive accuracy over the standard Lg penalty-based step-
wise and streamwise feature selection methods as well as
over Lasso and Elastic Nets, all of which are oblivious to
the existence of feature classes.

1. Introduction

Features often come in classes or groups that partition
the entire feature set into subsets or feature classes. For
example in biological datasets the genes may be divided
into different gene families or pathways. SNPs (Single
Nucleotide Polymorphisms) may be grouped by positional
proximity on the chromosome. When doing word sense
disambiguation [1], one can use adjacent words, the parts
of speech of adjacent words and the topic of the document
the word is in as feature classes. Similarly, when classify-
ing scientific papers, feature classes include words in the
paper, the journal or conference of the paper, citations to
and from the paper, the paper’s authors and the institutes to
which they are affiliated. When predicting the function of
a protein, feature classes include what proteins bind to it,
what proteins in the same or other species have similar se-
quence or structure. More generally, starting from any fea-
ture set, one can generate new features by using techniques

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.56

Dean Foster
Statistics
University of Pennsylvania
foster @ wharton.upenn.edu

779

Lyle H. Ungar
CIS
University of Pennsylvania
ungar @cis.upenn.edu

like Principal Component Analysis (PCA), Non Negative
Matrix Factorization (NNMF), transformations such as log
or square root, and by including interaction terms (i.e.,
products of the original features). Each feature generation
method produces a feature class.

These feature classes differ in size and in how dense they
are in “beneficial” features i.e. the features which should be
included in a predictive model. Standard feature selection
methods such as stepwise linear regression, which uses an
L penalty on the feature weights, or methods like the lasso,
which use an L; penalty on the feature weights, are obliv-
ious to the existence of this obvious structure in data; they
consider the entire feature set as belonging to a single equiv-
alence class. This paper shows that feature selection can be
improved if we account for the existence of multiple feature
classes when doing feature selection. The basic intuition
behind our approach is that some feature classes will have a
higher fraction of features that are beneficial and give better
predictive accuracy, so once we find such feature classes,
then we can preferentially draw features from those feature
classes. More precisely, when controlling the false discov-
ery rate (the probability of adding a spurious feature), if all
features are in a single equivalence class, then any feature is
penalized by the cost of considering all the features, while
if features are divided into classes, then that feature need
only be penalized for the search over other features in the
same class, plus a smaller penalty relating to the number of
classes.

We present an approach based on information theory to
do efficient feature selection in data with multiple feature
classes. When predictive features occur predominantly in
a small number of feature classes, which is generally the
case in real data, our information theoretic approach pro-
vides a significantly improved feature selection criterion.
Our Three Part Coding (TPC) scheme is a penalized like-
lihood method based on the Minimum Description Length
Principle (MDL) [7], and it exploits the information about
the existence of multiple feature classes in the data to con-
struct an efficient coding scheme.

We present experimental results on synthetic and real

IEEE
computer
psouety

Word Sense Disambiguation (WSD) [1] and gene expres-
sion data [5]. Our TPC methods show substantial improve-
ment in performance over standard L, penalty-based stan-
dard stepwise and streamwise methods, as well as over
other popular feature selection methods like Lasso (L4
penalty) [8] and Elastic Nets (both L; and L, penalty) [12].

The rest of the paper is organized as follows. Section
2 provides a brief background on various feature selection
methods, and how our work relates to them. In Section 3
we formulate the Three Part Coding (TPC) scheme. We
demonstrate our results on synthetic and real data in Section
4. In Section 5 we talk about related work and we conclude
in Section 6.

2. Background: Feature Selection Methods

Standard feature selection methods for supervised learn-
ing assume a setting consisting of n observations and a fixed
number of p candidate features. The goal of feature selec-
tion is to select the feature subset that will lead to a model
with least prediction error on test set. For many predic-
tion tasks only a small fraction of the total p features are
beneficial, so good feature selection methods can give large
improvement in predictive accuracy.

The state of the art feature selection methods use either
Ly or L; penalty on the coefficients. L; penalty methods
such as Lasso [8] and its variants [9, 10], being convex, can
be solved by optimization and give guaranteed optimal so-
lutions [2]. On the other hand, Ly penalty methods require
an explicit search through the feature space as in stepwise,
stagewise and streamwise regression [11].

Penalized likelihood methods are widely used for feature
selection. They minimize a score which can be represented
as:

Score = —2log(likelihood) + Fq (1)

where F is a function designed to penalize model com-
plexity, and g represents the number of features currently
included in the model at a given point. The first term in the
above equation represents a measure of the in-sample error
given the model, while the second term is a model com-
plexity penalty. There are many different functions F' that
are used in practice. The most common ones being AIC
(Akaike Information Criterion; F' = 2), BIC (Bayesian In-
formation Criterion; F' = log(n)) and RIC (Risk Inflation
Criterion; F' = 2log(p)) [4], also known as a Bonferroni
penalty.

Our Three Part Coding (TPC) approach uses a Minimum
Description Length (MDL) [7] based coding scheme, which
we explain in the next section, to specify another penalized
likelihood method.

780

3. Three Part Coding (TPC) scheme

In this section, after describing our notation, we present
the TPC scheme and compare it with standard RIC coding
[4]. The symbols used throughout the rest of this section are
defined in the following Table 1:

Table 1. Symbols used and their definitions.

Symbol Meaning

n Number of observations

P Number of candidate features

p* Number of beneficial features in the candidate
feature set

q Number of features currently included in the model

Q Number of feature classes currently added in the
model

K Total number of feature classes

Pk Total number of candidate features in the k*"

feature class

All the above values are given by the data, except p*
which is unknown, and g and (), which are determined by
the search/optimization procedure.

As mentioned earlier, TPC is a penalized likelihood
method based on the principle of Minimum Description
Length (MDL) [7]. In MDL, both sender and receiver are
assumed to know the feature matrix, X. The sender’s goal is
to construct a model which uses X to describe the response
vector Y. This model is sent as a “message” to the receiver
so that the receiver can reconstruct Y. The goal is to mini-
mize the sum of the length of this message and the error in
reconstructing Y, both measured in bits. This sum is called
the Total description length (TDL).

Equation 1 shows the two parts of the TDL. Let S be
the number of bits for encoding the residual errors given the
models, and let Sj; be the number of bits for encoding the
model. Then the TDL can be written as:

S=5g+5u (@)

When we evaluate a feature, we want to maximize the
reduction of TDL incurred by adding this feature to our
model. This change in description length is:

AS =ASg —ASy (3)

where ASE > 0 is the number of bits saved in describing
residual error due to increase in the likelihood of the data
given the new feature and ASy; > 0 is the extra bits used
for coding this new feature.

In TPC AS), has three parts; the class of the feature be-
ing added, which feature in the class, and what is its coef-
ficient. We describe each of these codings in the following
subsections.

Coding Scheme for ASy :

ASE represents the increase in likelihood of the data by
adding the new feature to the model. When doing linear
regression, we assume a Gaussian model and hence have:

2?:1(%‘ - wxi)Q
4

202
where y is the response, x’s are the features, w’s are the
regression weights and o2 is the variance of the Gaussian
noise.
Alternatively, we can write Equation 4 to represent
log(likelihood) in bits.

P(y|lw, x) = likelihood ~ exp (— <

E2
2021n2

where E? is the SSE (Sum of Squared Errors).

Intuitively, ASE corresponds to the increase in benefit
by adding the new feature to the model. It is always non-
negative; even a spurious feature cannot decrease the train-
ing data likelihood.

Coding Scheme for AS); :

To describe ASj;, when a new feature is added to the
model, we use a three part coding scheme. Let [~ be the
number of bits needed to code the index of the “feature
class” of the evaluated feature, let I; be the number of bits
used to code the index of the evaluated feature in that partic-
ular feature class, and let [y be the number of bits required
to code the coefficient of the evaluated feature. Thus:

—loga(likelihood) ~ 5)

ASy =l +1lr+1g (6)

This coding, as specified below, is the source of the
power of our approach. Intuitively, if a feature class has
many good (beneficial) features then we can share the cost
of coding [~ across the features and hence save many bits
in coding, as each feature costs roughly log(py,) bits to code
rather than log(p) as required by the standard RIC penalty.
Now we explain how to code each of the three terms on
right hand side of Equation 6.

Code [c: ¢ represents the number of bits required to
code the index of the feature class to which the evaluated
feature belongs. When we are doing feature selection by
using TPC, two cases can arise:

Case 1: The feature class of the feature being evaluated
is not yet included in the model. In this case, we code [by
using log(K) bits, where K is the total number of feature
classes in the data. From now on, we will denote [~ under
this case as [}, .

Case 2: The feature class of the feature being evaluated
is already included in the model. In this case, we can save
some bits by coding o using log(Q) bits where Q is the
number of feature classes included in the model till that

781

point of time. (Think of keeping an indexed list of length @
of the feature classes that have been selected). This is where
TPC wins over other methods, as we do not need to waste
bits on coding the feature class if it is already in the model.
We will call [under this case as lzc.

We can summarize the coding scheme for /- as follows:

log(K) if the feature class is not in the
L — model
o= log(Q) if the feature class is already in
the model
(7
Code l;: [represents the number of bits required to code

the index of the feature within its feature class. We have a
total of py, features in the k" feature class. We use an RIC-
style coding to code I; i.e. we use log(py) bits to code the
index of the feature. (This is equivalent to the widely used
Bonferroni penalty). Since we also code the coefficient of
the feature Iy (unlike standard RIC), we do not overfit even
when the usual RIC assumption of n << py, is not valid.

Iy = log(pr) ®)

Code ly: This term corresponds to the number of bits re-
quired to code the value of the coefficient of each feature.
We could use either AIC or the more conservative BIC cri-
terion to code the coefficients. We use 2 bits for each co-
efficient, which is quite similar to the AIC criterion and is
based on the approach given in [6]. Therefore:

lg =2

©)
3.1 Analysis of TPC Scheme

We now compare the TPC coding scheme with a stan-
dard coding scheme (abbreviated as SCS below) in which
we use an RIC penalty for feature indexes and an AIC-like
penalty (2 bits) for the coefficients of the features, as this
is the form of standard feature selection setting that comes
closest to TPC in theory and in performance.

The Total Cost in bits used by SCS to code the g selected
features is:

RIC Penalty Coef ficients
— N
TotalCostscs = [qlog(p)] + [24]

qlog(K) + qlog(%) + 2¢ (10)

The total cost used by TPC to code the same features is:

Io

—_——

Qlog(K) + (¢ — Q)log(Q)
—

+qlog(pr) + 2q

1&

TotalCostrpc

(1)

The savings in coding comes from the (q-Q) features that
belonged to classes that were already in the model.

Case 1: All Classes are of uniform size: In this case,
log(py) in the Equation 11 will be equal to log(+), as the
size of each feature class will be same and will be equal to
+, where p is the total number of candidate features and
K is the total number of feature classes. So, subtracting
Eq. (11) from Eq. (10) we get:

ATotalCost = (q — Q)log(g)

Equation 12 shows that TPC gives substantial improve-
ment over SCS when either one or both of the conditions
q > Qor K > (@ are true. In other words, TPC wins when
there are more features ¢ than feature classes @ included
in the model (i.e., there are multiple features per class) or, a
smaller fraction, Q/K, of the feature classes include selected
features.

In short, the real performance gain of TPC occurs when
all or most of the (beneficial) selected features lie in small
number of feature classes. The best case would occur when
all the (beneficial) selected features lie in one class and
the worst case occurs when the beneficial features are uni-
formly distributed across all the feature classes. In real
datasets, the scenarios that we encounter lie somewhere be-
tween the best and the worst case, so we can expect sub-
stantial performance gain by using TPC.

12)

Case 2: Classes are of nonuniform size: In this case,
much of the theory remains the same as in Case 1, except
that C' # £. Let £ =p,.,, i.e., the average size of a feature
class. Then equation 12 becomes:

Term?2
K
ATotalCost = (q — Q)log(a) + qlog(p;vg) (13)
k

Now, it can easily be inferred that p,,, > pi occurs in
the case when the beneficial features are in feature classes
whose size is less than the average size of a feature class.
Intuitively, p,vg = pi occurs if the size of all the feature
classes is same (which was Case 1), so the performance of
TPC will be improved in this case compared to Case 1 if the
beneficial features lie in small classes. The improvement in
performance over Case 1 will be quite significant when the

782

beneficial features lie in a small class i.e. C is small or there
are very big classes with no beneficial features in them, in
either case the contribution of Term 2 in Equation 13 will
increase.

4. Experimental Results

In this section we demonstrate the results of the TPC
scheme on synthetic and real datasets. For our experiments
we use the TPC coding scheme with stepwise and stream-
wise feature selection and compare against standard step-
wise regression with an RIC penalty, standard streamwise
feature selection, Lasso [8] and Elastic Nets [12]. Step-
wise feature selection makes multiple passes through the
data and at each iteration adds the best feature in the model
(i.e., the feature that has the maximum A.S). It stops when
no feature provides better AS than in the previous iteration.
In streamwise feature selection, each feature is considered
only once for addition to the model, and added if it gives
significant reduction in penalized likelihood, or otherwise
discarded and not examined again. It is greedier than step-
wise regression, and works well when there are millions of
candidate features.

For Lasso and Elastic Nets we used their standard LARS
(Least Angle Regression) implementations [2]. When run-
ning Lasso and Elastic Nets, we pre-screened the datasets
and kept only the best ~ 1,000 features (based on their p-
values), as otherwise LARS is prohibitively slow. (The au-
thors of the code we used do similar screening, for similar
reasons.) For all our experiments on Elastic Nets [12] we
chose the value of A\ (the weight on the Ly penalty term),
as 1076,

To demonstrate the results on real datasets we used
Word Sense Disambiguation (WSD) [1] and gene expres-
sion datasets [5]. As is shown below, the results were quite
encouraging.

4.1 Evaluation on Synthetic Data

In order to demonstrate the theoretical aspects of our
TPC coding scheme, we first tested it on two synthetic
datasets. For both the datasets, 1,000 features were gen-
erated independently from a Normal Distribution A(0, 1),
and the response vector of 100 observations Y was com-
puted as the linear combination of a set of 7 beneficial fea-
tures and Gaussian additive noise (N(0,1.72)). The first
data set “Set A” had 4 feature classes of unequal sizes and
7 beneficial features, all of which lie in a small feature class
of size 12. The second synthetic dataset “Set B” was gener-
ated so as to reflect the other extreme case, in which all the
classes are of same size, and had 100 feature classes, each
of size 100. Again all 7 beneficial features were in a single
feature class.

Table 2. The number of correct and spurious
features selected and 10-fold Cross Valida-
tion (CV) RMS error averaged over 10 runs.
A). Unequal class sizes, B). Uniform class
sizes.

Avg. Features Selected ~ 10-Fold
Method Correct Spurious CV Error

A B A B A B
SRIC 44 32 02 0.0 0.27 0.61
STPC 6.8 5.6 0.1 0.3 0.09 0.27
SSm 19 14 0.1 0.0 0.78 0.80
SmTPC 53 4.1 0.5 0.1 0.17 0.39
Lasso 52 43 22 1.8 0.22 0.41
EN 64 49 33 21 0.20 0.43

SRIC - Stepwise RIC , STPC - Stepwise TPC,
SSm - Standard Streamwise, SmTPC - Streamwise TPC,
EN - Elastic Nets

As can be seen from the results in Table 2, in both cases
the TPC versions of both stepwise and streamwise regres-
sion outperform their respective standard regression coun-
terparts, as well as outperforming lasso and elastic nets.

4.2 Evaluation on Real Datasets

In order to benchmark the real world performance of
our TPC coding scheme, we chose two datasets pertain-
ing to two diverse applications of feature selection methods,
namely Natural Language Processing (NLP) and Gene Ex-
pression Analysis. More information regarding the data and
the experimental results are given below.

Word Sense Disambiguation (WSD) Dataset: A WSD
dataset consisting of six ambiguous verbs and a rich set
of contextual features [1] was chosen for evaluation. It
consists of hundreds of observations of noun-noun collo-
cation, noun-adjective-preposition-verb (syntactic relations
in a sentence) and noun-noun combinations (in a sentence
or document). The WSD data range from 120 to 839 obser-
vations, 6,245 to 20,474 features and 59 to 75 classes.

A sample feature vector, given below, shows typical fea-
tures and their classes. In each case, the part of the feature
before the underscore is the feature class. Classes included
pos (part of speech of the verb), morph (verb morphology),
sub (the subject of the verb), subjsyn (the wordnet synonym
set labels of the subject), dobj (the direct object of the verb),
dobjsyn (dobj’s wordnet synsets), word-1, word-2, word+1,
word+2 (the words 1 or 2 before the verb or 1 or 2 after) pos-
1, pos-2, pos-3, pos-4 (the parts of speech of those words),
bigrams of the words, and tp (the topics of the document).

The results for the WSD Dataset are presented in the Ta-
bles 3 and 4. The standard errors for the different verbs and

783

Table 3. Average # of Features Selected

Dataset SRIC STPC SSm SmTPC Lasso EN
WSD 17 17.2 36.5 22.5 16.5 16.3
GSEA 1 2.4 8.6 2.8 14 6.8

Table 4. 10-fold CV RMS errors for the WSD
Dataset

Dataset SRIC STPC SSm SmTPC Lasso EN
ADD 0.42 0.39 0.29 0.28 042 040
BEGIN 0.31 0.27 0.29 0.27 032 032
CALL 0.16 0.15 0.26 0.23 0.24 0.30
CARRY 0.29 0.26 0.30 0.28 037 0.30
DEVELOP 042 0.41 0.44 0.43 052 048
DRAW 0.23 0.20 0.27 0.26 0.24 0.25

methods range from 0.0008 to 0.005, but TPC is always sig-
nificantly better than the competing methods.

Gene Set Enrichment Analysis (GSEA) Datasets: The
second real datasets that we used for our experiments were
gene expression datasets from GSEA [5]. We used five gene
expression datasets, with sizes ranging from 32 to 50 ob-
servations, 10,056 to 15,056 features and 182 to 318 fea-
tures. GSEA provides many different divisions of genes
into classes; we used gene classes C1: Positional Gene Sets
(based on cytogenetic band), C2: Curated Gene Sets (based
on pathway databases). The results for these GSEA datasets
are as shown in the Tables 3 and 5.

Table 5. 10 Fold CV Errors (RMS Value) for
GSEA Datasets

Dataset SRIC STPC SSm SmTPC Lasso EN
Leukemia 0.43 0.41 1.92 0.45 0.71 0.71
Gender 1 0.24 0.21 0.27 0.26 0.73 0.73
Diabetes 0.53 0.51 0.71 0.58 0.59 0.66
Gender 2 0.26 0.21 0.28 0.27 090 0.84
P53 0.53 0.52 0.54 0.49 075 0.72

For these datasets, TPC methods also beat the standard
methods. The standard errors for the different data sets and
methods range from 0.001 to 0.01 (with higher uncertainties
corresponding to the higher errors on the L; methods), but
TPC is again always significantly better than the competing
methods. Interestingly,the TPC methods selected substan-
tially fewer features on average than the other methods, but
still gave better performance. This is consistent with the
predictions of Equation 12 in that although the number of
features selected, ¢ may be small, the number of classes,
K, is quite large for the GSEA datasets.

5. Related Work

Other potential methods that do feature selection in set-
tings similar to TPC are Group Lasso [10] and GSEA [5].
Group Lasso is quite similar to the Standard Lasso (L;
penalty) that we used for our experiments, but it uses a
penalty which lies between L, and L. It induces sparsity at
the level of feature classes (“factors”), unlike Lasso which
does it at the level of features. Moreover it forces the coef-
ficients in the same group to have similar values, which is
not always a good assumption. For example, the expression
levels of genes in the same pathway tend to predict (or not
predict) cancer, but often their coefficients are of different
signs. The TPC scheme differs from Group Lasso as TPC,
being an Ly penalty, does not put any constraints on the
values of coefficients in the same class.

Gene Set Enrichment Analysis (GSEA) is another
method that has become popular for analyzing gene expres-
sion data. GSEA (and its variants and extensions [3]) finds
changes in expression levels of sets (classes) of genes se-
lected a priori in transcriptional profiling experiments. Its
goal is hypothesis testing: selecting all the features which
might be correlated with Y. In contrast to this, TPC builds
a predictive model and selects a minimal feature set. GSEA
focuses more on the question ‘Which feature classes are
significant?’ in the case where there may be large numbers
of overlapping feature classes, while TPC, concentrates on
the question ‘Which features are significant?’

6. Concluding Remarks

In this paper we proposed a Three Part Coding (TPC)
scheme for feature selection that is based on the principle
of Minimum Description Length (MDL). As predicted by
theory, TPC gives significant improvement in performance
over standard feature selection methods when beneficial
features are unevenly distributed across feature classes.

Although many data sets are presented as if they were a
single undifferentiated matrix with a single type of feature,
many problems do have natural feature classes. Words can
be grouped by part of speech, by whether they are unigrams
or bigrams, and by what dictionaries or word lists they ap-
pear on. Features of images can be grouped by their scale
or by the method of generating them (e.g. wavelet or filter
type or size). Metadata about objects often provides further
classes of features: who wrote it, where was it published,
when was it created or last modified, who has accessed it,
etc. Such feature classes are almost universally present for
documents such as web pages.

This paper has focused on settings where the problem
domain suggests feature classes. TPC works equally well
when features are derived by transformations of a single
original feature set. Transformations such as computing

784

principle components or generating interaction terms are
particularly well-suited for the use of TPC, as the sizes
of these feature classes are often widely divergent (10,000
features might generate 500 principle components, but 500
million interaction terms), and beneficial features are often
concentrated in the smaller feature classes. (The 500 PCAs
are more likely to contain highly predictive features, or at
least ones that can be found to be significant, than the 500
million interaction terms.) When doing feature selection,
it is important not to unduly penalize the 500 PCAs for the
fact that one also wants to look at the 500 million interaction
terms. Using an appropriate penalty term avoids precisely
this problem.

References

[1] J. Chen and M. S. Palmer. Towards robust high performance
word sense disambiguation of english verbs using rich lin-
guistic features. In ZIJCNLP, pages 933-944, 2005.

B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani. Least
angle regression. Annals of Statistics, 32:407-499, 2004.

B. Efron and R. Tibshirani. On testing the significance of
sets of genes. Annals of Applied Statistics, 1:107, 2007.

D. P. Foster and E. I. George. The risk inflation criterion for
multiple regression. The Annals of Statistics, 22(4):1947—
1975, 1994.

V. K. Mootha, C. M. Lindgren, K.-F. Eriksson, A. Subrama-
nian, S. Sihag, J. Lehar, P. Puigserver, E. Carlsson, and Rid-
derstr. Pgc-lalpha-responsive genes involved in oxidative
phosphorylation are coordinately downregulated in human
diabetes. Nature Genetics, 34:267 — 73, 2003/07// 2003.

J. Rissanen. A universal prior for integers and estimation
by minimum description length. The Annals of Statistics,
11(2):416-431, 1983.

J. Rissanen. Hypothesis selection and testing by the mdl
principle. The Computer Journal, 42:260-269, 1999.

R. Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society, Series B,
58:267-288, 1996.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight.
Sparsity and smoothness via the fused lasso. Journal of the
Royal Statistical Society Series B, 67(1):91-108, 2005.

M. Yuan and Y. Lin. Model selection and estimation in re-
gression with grouped variables. Journal of the Royal Sta-
tistical Society: Series B, 68(1):49-67, 2006.

J. Zhou, D. P. Foster, R. A. Stine, and L. H. Ungar. Stream-
wise feature selection. Journal of Machine Learning Re-
search, 7:1861-1885, September 2006.

H. Zou and T. Hastie. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society
Series B, 67(2):301-320, 2005.

(2]
(3]
(4]

(5]

(6]

(7]
(8]

(9]

(10]

(1]

[12]

