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Abstract

An important cue to high level scene understanding is
to analyze the objects in the scene and their behavior and
interactions. In this paper, we study the problem of clas-
sification of activities in videos, as this is an integral com-
ponent of any scene understanding system, and present a
novel approach for recognizing human action categories in
videos by combining information from appearance and mo-
tion of human body parts. Our approach is based on track-
ing human body parts by using mixture particle filters and
then clustering the particles using local non - parametric
clustering, hence associating a local set of particles to each
cluster mode. The trajectory of these cluster modes provides
the “motion” information and the “appearance” informa-
tion is provided by the statistical information about the rel-
ative motion of these local set of particles over a number
of frames. Later we use a “Bag of Words” model to build
one histogram per video sequence from the set of these ro-
bust appearance and motion descriptors. These histograms
provide us characteristic information which helps us to dis-
criminate among various human actions which ultimately
helps us in better understanding of the complete scene.

We tested our approach on the standard KTH and Weiz-
mann human action datasets and the results were compa-
rable to the state of the art methods. Additionally our ap-
proach is able to distinguish between activities that involve
the motion of complete body from those in which only cer-
tain body parts move. In other words, our method discrim-
inates well between activities with “global body motion”
like running, jogging etc. and “local motion” like waving,
boxing etc.

1. Introduction
Classification of human actions in video sequences has been
extensively studied by the vision community due to its
wide number of applications which include video surveil-
lance, object level video summarization, video indexing,
high level scene understanding etc. Besides this, it also pro-

vides a summary of the complex video data enabling effi-
cient processing for high level tasks. The main challenges
encountered in this task are occlusion, background clutter
and camera motion.

Broadly, the existing approaches can be divided into two
categories i.e. supervised and unsupervised. Since our al-
gorithm works in the supervised setting, so we will describe
the unsupervised approaches only briefly.

One class of approaches deal with using spatio temporal
features for the classification of human actions. In [11] the
authors apply spatio temporal volumetric features that scan
the video in space and time. Laptev et. al. [13] extend the
concept of 2D Harris and Förstner [7, 6] interest point de-
tectors to 3D where the third dimension is temporal. Their
approach is based on the assumption that interesting events
in videos are characterized by strong variations in both spa-
tial and temporal domains, hence they correspond to spatio
temporal interest points “corners”. Intuitively a spatio tem-
poral corner is an image region containing a spatial corner
whose velocity vector is reversing direction i.e. accelerat-
ing. The main assumption of this approach is that accel-
erating motion is interesting. But, this may not be justi-
fied as constant velocity or gradually changing motion may
also be interesting [5]. Dollár et. al. propose an alternative
approach to behavior recognition using sparse spatio tem-
poral interest points by applying separate filters in spatial
and temporal domains (2D Gaussian smoothing kernel and
quadrature pair of 1D Gabor filters) respectively. The prob-
lem with their approach is that their detector fires only when
there is a periodic motion, in other words they are assum-
ing that only periodic events are interesting, which may not
be always true and may constrain the performance of the
detector when tested on a wide variety of video sequences.

Another class of approaches that is commonly used, and
which are more closely related to our work, is to perform ac-
tion classification by tracking a number of spatial features.
The authors of [20] use view invariant aspects of the trajec-
tory of a tracked hand to differentiate between various ac-
tions. In [26, 14] the authors use the framework of tracking
as repeated recognition. Using these approaches the recov-
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ery of pose and configurations of the human silhouettes is
possible. However, they are still unreliable in domains with
cluttered background or in cases where the background has
poor contrast.

Lastly, there are approaches which classify human ac-
tion categories in unsupervised settings. In [15] the authors
use spatio temporal words and generative graphical models
(pLSA) to learn and recognize human actions in videos.

In this paper we propose to combine appearance and mo-
tion information for human action classification in videos.
Mixture particle Filters and local non - parametric cluster-
ing of particles abstract the appearance and motion infor-
mation. The approach is based on non Gaussian tracking
of the human body parts through a sequence of frames and
then extracting the appearance and motion descriptors. The
motion information is provided by the trajectory of the clus-
ter modes of a local set of particles. The statistical informa-
tion about the relative motion of the particles of that cluster
over a number of frames provides the appearance informa-
tion. Later we combine these appearance and motion de-
scriptors to build one histogram per video sequence using
a “Bag of Words” model. These highly discriminative his-
tograms provide us characteristic information which helps
us to distinguish among various human actions and hence
classify them properly. The idea of using tracked motion
trajectories of human body parts has been previously used
by [1, 19, 28]. But these approaches were highly depen-
dent on the performance of the tracker for their robustness
and required much supervision. Our approach differs from
these approaches in the fact that we use robust statistical
information about the motion of the particles in combina-
tion with the information about the trajectory of the cluster
modes for the classification of human actions. As the ap-
proach does not completely rely on one aspect of tracking
and since the histogram representation is highly robust to
clutter hence performance of the tracking subroutine ceases
to be a bottleneck in the performance of our approach.

The rest of the paper is organized as follows. In Section 2
we briefly review Particle Filters, then we describe our ap-
proach in detail, including the various statistical models that
our system uses in Section 3. In Section 4 we present the
experimental results of our algorithm on the KTH [25] and
Weizmann [3] human action datasets. Finally we conclude
in Section 5 by giving a summary of our approach.

2. Mathematical Background

In this section we describe the concept of particle filters,
which we use in our tracking module. The major advantage
of using particle filters is that they can handle multimodal
likelihoods [8] and can track even after an occlusion.

2.1. Bayesian Filtering and Sequential Monte Carlo
Methods Revisited

Given an internal state sequence {xt; t ∈ N} ,xt ∈ Rnx

(like position, velocity etc.) and an observation sequence
{yt; t ∈ N} ,yt ∈ Rny (actual measurements/observations
made in the image) where nx is the dimension of the inter-
nal state vector and ny is the dimension of the observation
vector, the Bayesian Filtering distribution can be written in
two steps as follows:

• Prediction:
p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

• Update:
p(xt|y1:t) = p(yt|xt)p(xt|yt−1)R

p(yt|xt)p(xt|y1:t−1)dxt

where
p(xt|xt−1) is the transition distribution
p(xt|y1:t) is the posterior distribution at current time step

SMC (Sequential Monte Carlo Methods) or Particle Filters
provide an approximate solution to the above two recursive
equations by using a large set of random samples called par-
ticles. In standard particle filters we approximate the poste-
rior p(xt|y1:t) with a set of Dirac functions centered at finite
set of N particles

{
xi
t

}
i=1...N

:

p(xt|y1:t) ≈
N∑
i=1

witδxi
t
(xt), (1)

where wit is the weight associated with the ith particle and
is calculated as:

wit ∝ wit−1

p(yt|xit)p(xit|xit−1)
q(xit|xit−1, yt)

, (2)

where q(.) is the proposal distribution or the importance
density function which is often chosen to be p(xt|xt−1).
Very often a resampling algorithm is applied to avoid the
degeneracy problem [2], in which case wit−1 = 1

N ∀i, hence

wit ∝ p(yt|xit), (3)

i.e. the weights are proportional to the likelihood function.
The resampling step derives the particles depending on the
likelihood function of the previous step, and all the particles
receive a starting weight equal to 1

N which will be updated
by the next frame likelihood function.

3. Our Approach
3.1. Statistical Model

In order for a particle filter to work we need to chose
an initial distribution p(x0) and a transition distribution
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p(xt|xt−1) for our state sequence {xt; t ∈ N}. Besides
this we also need to chose an observation / likelihood model
which specifies the likelihood of an object being in a spe-
cific state. The observations {yt; t ∈ N} are conditionally
independent given the state { xt; t ∈ N}, with marginal dis-
tribution p(yt|xt). We now describe the models we use.

3.1.1 Initial Distribution p(x0) and Transition Distri-
bution p(xt|xt−1)

In our case the initial distribution for the spread of particles
consists of the areas of high response of the spatial inter-
est point operator [23]. We squash the output of a DoG
(Difference of Gaussians) filter by a sigmoidal. These spa-
tially strong response regions are the regions which are most
likely to capture the “interestingness” of the frame [13, 5]
and hence will serve as a good prior for initial distribution
of particles. The areas of strong filter response for some
activities in the KTH [25] and Weizmann [3] datasets are
shown in Fig. 1.

As far as the transition distribution p(xt|xt−1) is con-
cerned, we use a standard second order autoregressive
model [17] as below:

Xt −X0 = A(Xt−2 −X0) +B(Xt−1 −X0) + Cεt (4)

where A, B and C are constants and εt is Gaussian random
noise used to diffuse the particles.

Robustness of this model comes from the fact that it
takes into account previous states for velocity and accel-
eration information and hence captures the dynamics of the
motion.

3.1.2 Observation Model p(yt|xt)

The observation model is one of the most important factors
which determines the performance of the tracker. There
have been a variety of observation models that have been
used in literature depending on the application and data.
The most common ones being multi-color observation mod-
els based on Hue Saturation and Value (HSV) color his-
tograms [18]. They are widely used as they are insensitive
to illumination effects as HSV decouples the intensity (i.e.
value) from color (i.e. hue and saturation). Models based
on boosting are also commonly used [17].

We investigated likelihood models for gray-scale im-
ages, as such models are simple compared to their color
counterparts and can speed up the computation, without
sacrificing much of the performance.

• A Global Likelihood Model:
This model is based on the assumption that the
predicted position of the particle in the next frame
should also lie in spatially interesting region. We
measure the likelihood considering a n × n window

around the particle position (yt).

p(yt|xt) ∝ Number of “interesting” pixels in that
n× n region surrounding the particle.

Due to its simplicity, this model is computationally ef-
ficient and at the same time does not sacrifice perfor-
mance.

• A Local (Gaussian) Model:
This model postulates that the predicted position
of the particle in the next frame should be similar
in appearance to its position in the current frame,
which we found out to be true in practise. It can be
represented as:

p(yt|xt) ∝ e−λ
Pn2

i=1 |I
i
t−I

i
t−1|

2
(5)

where Iit are the normalized pixel values in frame t
for the particle i. This is the actual model that we
used in our algorithm as it is more sophisticated than
global likelihood model (described above) and gives
better performance, though it is less computationally
efficient than the global model.

3.2. Overview of the method

Our algorithm is summarized in Algorithm 1. We extract
a characteristic video histogram for each video sequence
based on tracking information obtained from the relative
motion of the particles and tracked motion trajectories of
human body parts. The basic idea is that human activities
can often be characterized rather well by appearance and
the local motion of the body parts.

At the beginning we spread the particles uniformly on
the high response areas of a DoG (Difference of Gaussian)
filter. Intuitively this corresponds to a region which has
“spatial interestingness” and hence serves as a good prior
for the initial distribution of the particles. As a next step, the
particles are clustered by Mean Shift Clustering [4] (since
we do not know the number of clusters a priori) and only
sufficiently dense clusters (containing ≥ 2 % of total parti-
cles) are kept as can be seen in Fig. 2. The cluster modes
correspond to the regions of high particle density. The clus-
tering step allows us to associate a fraction of particles to
each cluster mode and also vary the granularity of the infor-
mation to be extracted by choosing a low or high value of
the kernel bandwidth for mean shift clustering. In essence
we have a mixture particle filter [27] i.e. a separate particle
filter for each cluster mode. Since, these cluster modes pro-
vide rich information about the relative motion of the parti-
cles belonging to that cluster, so we chose to attach a local
log-polar binned histogram to each cluster mode to extract
this appearance information quantitatively.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 1. Areas of Strong Filter Response: (a) - (d) shows activities [boxing, handclapping, running, handwaving] from the KTH dataset
[25] and (e) - (h) shows activities [jack, jump, wave, bend] from the Weizmann dataset [3]

(a) (a′) (b) (b′)
Figure 2. Plots for steps 3 - 5: (a - a′) Shows the initial distribution of particles and the cluster modes [boxing and running (KTH dataset)]
, (b - b′) Shows the drifted and diffused particles and cluster modes

In our approach, the log-polar histogram (5 radial and 12
angular bins) attached to each cluster mode, provides infor-
mation about appearance. The motion information is pro-
vided by the trajectory of the cluster mode. We get a set of
robust descriptors from the appearance (number of particles
in each sector of the log-polar binned histogram) and mo-
tion information (x,y co-ordinates of the cluster modes) that
can not only discriminate among various activities (based
on appearance) but can also distinguish between slow and
fast activities (based on the motion of the cluster mode).

We combine these set of appearance and motion descrip-
tors into one histogram by a “Bag of Words” representation.
We cluster the descriptors by k-means to obtain a codebook
and then quantize the descriptors into the bins of the code-
book vectors for each video sequence. Finally we compute
Hellinger Distance between the histograms and then clas-
sify them using a SVM [24].

As is obvious, in our model we do not make any implicit
assumptions about the interestingness of the motion as is
done by [13, 5].

The plots for the Steps 4, 5 and 9 of Algorithm 1 are
shown in Fig. 2.

4. Experimental Results

In this section we present results on two datasets: KTH
human motion dataset [25] and Weizmann human action
dataset [3]. Each dataset contains videos of cluttered back-
ground, moving cameras and multiple actions. The datasets
and the results are explained in detail in the following sub-
sections.

4.1. KTH Human Motion Dataset

KTH Dataset is the largest available and most standard
dataset used for benchmarking results for human action
classification. The dataset contains six activities (boxing,
handwaving, handclapping, running, jogging, walking) per-
formed by 25 subjects in 4 different conditions (like illumi-
nation, background, zoom). The dataset contains a total of
600 video sequences (two of which we discarded, because
their downloadable file was broken) and in each video only
one action is performed. Some sample sequences are shown
in Fig. 3.

We build one normalized histogram per video by com-
bining our set of motion and trajectory descriptors. We use
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Figure 3. Example sequences from KTH dataset [walking, jogging, running, boxing, handwaving and handclapping]

Algorithm 1 Human Action Classification in Videos
1: for {videos= 1: endVideo} do
2: //Initialization
3: for {frames= 1: 1} do
4: Distribute the particles on the squashed response of the

spatial interest point detector i.e. the DoG filter
5: Cluster the particles locally by using Mean Shift Cluster-

ing. Attach a log-polar binned histogram to each cluster
mode.

6: end for
7: //Updation
8: for {frames=2: endFrame} do
9: Drift, diffuse and resample the particles. Update the clus-

ter modes based on the particles belonging to that cluster.
10: Obtain mean and standard deviation of the motion of the

particles in the bins of the histograms. Also obtain the
trajectories of the cluster modes.

11: end for
12: Use “Bag of Words” representation to build appearance and

motion histograms.
13: Normalize and combine these histograms to get one his-

togram per video and classify it using a linear SVM classi-
fier.

14: end for

the Hellinger distance to compare two histograms.

d(I, I ′) = ||H1/2
I −H1/2

I′ ||2 =
√

2− 2 < HI , HI′ > (6)

The Hellinger distance has similar properties as the chi-
square distance, for example, in that it penalizes less large
differences in highly populated bins. Lastly we use a linear
SVM to classify these histograms.

We perform 10 fold CV on the validation set to fine tune
our parameters and then perform training and testing us-
ing the standard splits of the sequences as mentioned on the
dataset homepage [25]. As the approach is probabilistic we
run the experiments 10 times and report the mean and the
standard deviation.

For the “Bag of Words” model we experiment with dif-
ferent codebook sizes varying from 500 to 5000. The varia-
tion of performance as a function of codebook size is plotted
in Fig. 4(b). It was observed that in most cases the classifier
became much more discriminative with increase in size of
the codebook.

To evaluate the performance of our approach we plot the
results in the matrix form showing the confusions among

various activities. The confusion matrix for the six classes
of the KTH dataset is shown in Fig. 4(a).

As is obvious from the results there is confusion be-
tween ‘walking’ and ‘jogging’ and also between ‘boxing’
and ‘handclapping’, which is quite intuitive as these actions
are quite similar. Even if we see the video sequences with
naked eye, we can not fully distinguish between these ac-
tivities. Also, another thing worth mentioning is that our
approach is able to distinguish between activities with local
and global motion. This fact is obvious from our results, as
they bring out a better distinction between global body mo-
tion (like jogging, running, walking) and local motion (like
boxing, handwaving, handclapping). Our novel apporach
of separating appearance from motion gives results which
are comparable to the state of the art methods as shown in
Table 1.

Table 1. Table comparing our approach to state-of the art methods
Method Name Avg % Accuracy Learning

This paper 84.67 Supervised
Kim et. al.[12] 95.33 Supervised

Schindler et. al. [22] 92.70 Supervised
Jhuang et. al [9] 91.70 Supervised

Nowozin et. al. [16] 84.72 Supervised
Jiang et. al.[10] 84.40 Supervised
Dollár et. al. [5] 81.17 Supervised

Schuldt et. al. [25] 71.72 Supervised
Ke et. al [11] 62.96 Supervised

Niebles et. al [15] 81.50 Unsupervised
Savarese et. al. [21] 86.83 Unsupevised

On average the performance was 84.67 %, for all activi-
ties, with a standard deviation of 0.56 % for the linear SVM
classifier.

4.2. Weizmann Human Action Dataset

The second dataset that we use to test our approach is the
Weizmann Human Action Dataset. It contains a total of
10 actions performed by 9 people, to provide a total of
90 videos. Sample sequences are shown in Fig. 5. The
dataset contains videos with a static camera unlike KTH,
where some of the videos had zooming and also the videos
have simple background. However, this dataset contains 10
activities, which is more compared to 6 activities of KTH
dataset, so it will provide a good test to our approach in the
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(a) (b)
Figure 4. Results for the KTH dataset (using the Local likelihood model) (a) shows results for a linear SVM classifier, (b) shows the average
accuracy as a function of codebook size. Note: Since our approach is based on particle filter so in order to get a good initial spread for the
particles, we truncate the first few frames from running, walking and jogging sequences so that the human silhouette is visible in the first
frame itself.

Figure 5. Example sequences from Weizmann dataset [3] [bend,
p-jump, wave2, run, jump, jack, walk, wave1, skip and side]

setting in which the number of activities are increased.
Again, we do 10 fold CV on a held out validation set of

20 sequences to fine tune our parameters and then split the
remaining data into 70 - 30 for training and testing set. Here
also Hellinger distance is used to compare two histograms
and the final classifier used is a linear SVM. The confusion
matrix is shown in Fig. 6(a) and the performance depen-
dence on codebook size is show in Fig. 6(b).

As is obvious from the confusion matrix, there was some
confusion in the classification of the “skip” activity. Overall
the mean accuracy was 89.9 % averaged over 10 runs, with
a standard deviation of 1.61 %.

5. Summary and Conclusion
In this paper we proposed a novel approach for human ac-
tion classification in videos based on combining appearance
and motion information obtained from tracking of the hu-
man body parts. A mixture particle filter [27, 17] approach
is used in which a single filter is responsible for each cluster
mode. The approach is based on extracting a set of descrip-
tors based on appearance and motion. We get the appear-
ance information from the relative motion of the particles in
the bins of the log-polar histogram attached to each clus-

ter mode and the motion information from the trajectory
of the individual cluster modes. It turns out that the his-
tograms obtained from the bag of words representation of
these descriptors are not only characteristic of the activity
being performed but are also highly robust to clutter, as can
be seen by the performance on Weizmann dataset in which
there was lot of background clutter.

We demonstrated results on two standard datasets i.e. the
KTH and Weizmann Human Action Datasets. The results
were comparable to state of the art methods and they vali-
date our proposed approach. Besides this, we also proposed
two likelihood/ observation models for gray-scale images
which are simple and easy to implement.

In future we would like to experiment with other likeli-
hood models for gray-scale images and would like to extend
our approach to detect multiple activities in the same video
so as to provide a more complete understanding of the com-
plete scene.
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