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Abstract. We contribute a novel and interpretable dimensionality re-
duction strategy, eigenanatomy, that is tuned for neuroimaging data.
The method approximates the eigendecomposition of an image set with
basis functions (the eigenanatomy vectors) that are sparse, unsigned
and are anatomically clustered. We employ the eigenanatomy vectors as
anatomical predictors to improve detection power in morphometry. Stan-
dard voxel-based morphometry (VBM) analyzes imaging data voxel-by-
voxel—and follows this with cluster-based or voxel-wise multiple com-
parisons correction methods to determine significance. Eigenanatomy
reverses the standard order of operations by first clustering the voxel
data and then using standard linear regression in this reduced dimen-
sionality space. As with traditional region-of-interest (ROI) analysis, this
strategy can greatly improve detection power. Our results show that eige-
nanatomy provides a principled objective function that leads to localized,
data-driven regions of interest. These regions improve our ability to quan-
tify biologically plausible rates of cortical change in two distinct forms
of neurodegeneration. We detail the algorithm and show experimental
evidence of its efficacy.

Introduction

In machine learning, interpretable data decompositions are termed “parts-based
representations” because they transform unstructured data into interpretable
pieces [1–3]. Recent work in machine learning points to the fact that exploiting
problem-specific information can improve parts-based representations [4–6]. Un-
informed, generic matrix decomposition methods, e.g. standard principal com-
ponent analysis (PCA), may be difficult to interpret because the solutions will
produce vectors that are everywhere non-zero, i.e. involve the whole brain rather
than its parts. Sparse methods have sought to resolve this issue [2, 3, 7–10]. How-
ever, these recent sparse multivariate methods are anatomically uninformed.

In this work, we employ a novel data-driven framework, related to the meth-
ods above, to delineate cortical networks wherein longitudinal atrophy patterns
in Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) dif-
fer from controls. Our novel image processing framework is open-source, unbi-
ased with respect to registration and segmentation [11, 12] and is formulated



spatiotemporally, as described in [13]. At the statistical level, our method is un-
biased in that it uses the intrinsic covariation of the dataset to parcellate the cor-
tex into coherent regions and, in this reduced space, we gain sensitivity over full
voxel-wise testing with voxel-based morphometry (VBM) [14]. Dimensionality
reduction is critical for datasets that are relatively small and yet which quantify
valuable and difficult to collect measurements in uncommon populations of sub-
jects, as in FTLD. Critically, our novel dimensionality reduction method provides
an objective function that optimally maps the classical singular value decompo-
sition (SVD) eigenvectors that are both signed and global into spatially localized,
sparse, unsigned pseudo-eigenvectors (or eigenanatomy). To our knowledge, the
specific objective function used in eigenanatomy is the first to formulate an un-
signed sparse decomposition with explicit guidance by the SVD solution and
with anatomically informed regularization. We apply this framework in a cohort
that is diagnosed by CSF biofluid biomarkers with high specificity and sensi-
tivity [15]. This well-defined cohort provides an excellent test-bed for this new
algorithm as we expect to identify specific patterns of cortical atrophy within
regions known to be affected in FTLD and AD. At the same time, the relatively
small cohort and challenges of longitudinal mapping may make this quantifica-
tion difficult to achieve with VBM. We also show that eigenanatomy produces
more powerful predictors when compared to related methods: VBM, classic SVD
and penalized matrix decomposition (PMD) [16]. PMD is freely available and
provides a sparse approach to PCA.

Methods

The class of methods encompassing non-negative matrix factorization (NMF)
[1, 3, 17, 18], sparse principal components analysis (SPCA) [2, 19, 16, 20] and sin-
gular value decomposition [21, 22] form the basis for the approach proposed here.
More formally, define a n × p (rows by columns) matrix X where each row de-
rives from an observed subject image such that the collection of images is given
as vectors {x1, ..., xn} with each vector xi containing p entries. First, we denote
each eigenanatomy component (a pseudo-eigenvector) as vi where i is ordered
such that each eigenanatomy from v1 to vm provides a decreasing contribution
to the variance of matrix X. We define eigenanatomy pseudo-eigenvectors as
sparse. Sparseness means that some entries in vj will be zero.

The classic singular value decomposition (SVD) may be used to reduce the
dimensionality of this data by decomposing the dataset into the eigenvectors of
Cp = XTX and Cn = XXT (the right and left singular vectors, respectively).
The relationship between a Cp and a Cn eigenvector is given by Xvp = vn and
XTvn = vp. The n eigenvectors from Cp and Cn may be used to reconstruct the
matrix X by

∑
i v

n
i ⊗ vp

i λi where the λi denotes the ith eigenvalue and ⊗ the
outer product. We now detail the algorithm that comprises the main contribution
of this work and which is available as part of the sccan program within Advanced
Normalization Tools (ANTs) [13].



Our goal is to approximate the matrix X with its right and left singular
vectors but where the right singular vector is sparse. We might, then, minimize:

‖X−
∑
i

vn
i ⊗ vsp

i λi‖
2 (1)

where the vsp
i denotes the ith sparse right singular vector. It is known that the

optimal value for vsp
i is exactly XTvn ( if we relax sparseness constraints ).

Using the fact that Xvp = vn and XTvn = vp, we therefore reformulate the
objective in a slightly simpler form and seek to directly find vsp

i by optimizing:

arg min
vsp
i

‖Xvsp
i − vn

i ‖2. (2)

This optimization problem is quadratic without sparseness constraints and easily
solved by conjugate gradient through the normal equations ‖XTXvsp

i −XTvn
i ‖2.

Now, note that the vector XTvn
i = vp

i might have both positive and negative
values. As with non-negative matrix factorization, we seek a decomposition that
is unsigned. Thus, an optimal solution that minimizes ‖Xvsp

i − vn
i ‖2 will need

to model both signs. We therefore make a second adjustment by modeling the
positive and negative components of vp

i separately.
Each eigenvector may be written in an expanded form via the use of indicator

functions which are diagonal matrices with binary entries. For instance, if v
contains entries [ − 2, − 1, 0, 1, 2 ], then the positive indicator function is
I+ = [ 0, 0, 0, 1, 1 ] and the negative indicator function is I− = [ 1, 1, 0, 0, 0 ].
v may then be expressed as v = I+v + I−v = v+ + v−. We use these indicator
functions to separate the positive and negative components of our objective such
that the optimization in equation 2 becomes,

arg min
vsp+
i , vsp−

i

‖XTXvsp+
i − vp+

i ‖
2 + ‖XTXvsp−

i − vp−
i ‖

2 (3)

This minimization problem forms the basis for our novel approach to computing
eigenanatomy, i.e. anatomically localized approximations to the eigenvectors of
an anatomical imaging dataset. Derivation of sparse eigenanatomy is shown in
Figure 1. As noted above, we seek sparse and interpretable solutions. We define
a sparse vector as one which minimizes a l0 or l1 penalty term i.e. has either
a user-specified number of non-zero entries (l0) or absolute sum (l1). Although
the l1 penalty has advantages [2], we use the l0 penalty because it specifies the
fraction of the vector that is allowed to be non-zero. The sparseness restriction is
therefore easily interpreted by users of the eigenanatomy method. Eigenanatomy
seeks to identify sparse functions vsp+

i and vsp−
i that closely approximate the

eigenvectors in n-space, i.e. vi
n = Xvp

i . The objective function, again employing
the normal equations, is then:

arg min
vi

n∑
i=1

‖ Cpv
sp+
i − vp+

i ‖2 + ‖ Cpv
sp−
i − vp−

i ‖2 (4)

subject to: ‖vsp+
i ‖0 = ‖vsp−

i ‖0 = γ,



Algorithm 1 SNLCG optimization for eigenanatomy.

Input X, the eigenvectors of XXT and γ, the sparseness parameter.
for all vi ∈ {v1, . . . ,vn−1} do

vi ← XTvn
i . Get the p-space eigenvector from the vn

i .
Compute v+

i and v−i . . Find the + and − representation of vi.
vs+
i ← vs−

i ← 1
p

. Initialize the sparse + and − vectors.

vs+
i ← SNLCG(X,vs+

i ,v+
i , γ) . SNLCG + minimization.

vs−
i ← SNLCG(X,vs−

i ,v−i , γ) . SNLCG − minimization.
vs−
i ← vs−

i ∗ (−1) . Reset vs−
i to be positive.

end for

where γ defines the desired level of sparseness for each eigenanatomy vector.
Eigenanatomy therefore produces 2∗n sparse pseudo-eigenvectors whose product
with X may be used a predictors in standard linear regression. Importantly,
because these vectors are unsigned, they may be interpreted as weighted averages
of the input data.

Sparseness can be enforced by a soft-thresholding algorithm as in [2, 16]. We
denote this function as S(v, γ) and (in an adhoc manner) allow it to also re-
ject isolated voxels of the eigenanatomy vector that are non-contiguous (i.e. we
provide a cluster threshold as in VBM). Minimization problems involving the
l0 penalty are np-hard. The relaxed form of this objective function (i.e. with-
out the sparseness constraint) is purely quadratic and can easily be solved by a
conjugate gradient method. Thus, we propose a new sparse, nonlinear conjugate
gradient (SNLCG) method as a minimization procedure for the eigenanatomy
objective function to deal with the nonlinearities induced by the S function and
l0 constraint. The additional advantage of SNLCG is that its solutions approach
the quadratic minimum as sparseness constraints are relaxed. We detail the
minimization algorithms for the eigenanatomy objective function (equation 4)
in algorithms 1 and 2. The algorithms are also available in an open-source R
package for free use and within the ANTs toolkit.

Results

For all uses of eigenanatomy below, we set the sparseness parameter, γ, to select
5% of the voxels in the cortex. We choose 5% because this provides interpretable
clusters of regions in the cortex and yet still allows a reasonable reconstruction
of the original data matrix, as shown in Figure 1.

Reconstruction error: We quantify the ability of the eigenanatomy algorithm
to reconstruct the original dataset from sparse eigenvectors using equation 1.
As a baseline, we compare the full eigenanatomy solution to the reconstruction
given by applying the soft-threshold function S directly to the SVD-derived vec-
tors vp

i without further optimization. We call this “soft-SVD”. We also compare
reconstruction error to the eigenanatomy algorithm run with a restriction on
the number of iterations in the SNLCG sub-algorithm. These experiments show
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Fig. 1: The eigenanatomy basis functions: The original eigenvector (far left)
has both positive and negative components. These are separated into the posi-
tive and negative vector components (middle figures). The sparse eigenanatomy
approximation to v− is shown at far right. Because the entries of vs− are either
zero or negative, the sign of vs− can be changed to positive. Thus, vs− is an
interpretable measurement of the data and provides a weighted average of the
original signal. Ultimately, the weighted average of the imaging data provided
by vs− is used as a predictor in regression. The same is done with vs+. In the
lower portion of the figure, we see reconstruction results from the eigenanatomy
method—see the results section for more explanation.

that the full eigenanatomy algorithm run until convergence (error = 1.251 ) im-
proves upon both the soft-SVD solution (error = 1.292) and the limited iteration
eigenanatomy solution (error = 1.279). Error is measured by the frobenius norm
taken between the original matrix and the reconstructed matrix.

Neuroimaging data: Our cohort consists of 61 participants, including 15 pa-
tients with AD (7 females), 23 patients with FTLD (14 females), and 23 controls
(13 females). All patients were clinically diagnosed by a board-certified neu-
rologist and cerebrospinal fluid confirmation of the underlying pathology was
obtained [15]. No significant difference exist between disease duration, age or
education in the patient or control groups. Two 3.0T MPRAGE T1-weighted
magnetic resonance images were obtained for each subject. The FTLD group
(time interval 1.12 years +/- 0.28) trended (p<0.081) towards having a reduced
interval when compared to elderly controls (time interval 1.29+/-0.36 years),
as did the AD group (time interval 1.13+/-0.25 years, p<0.12). The interval
between scans was therefore factored out as a nuisance variable.

Detection power in comparison to VBM, SVD and PMD: In this sec-
tion, we employ eigenanatomy to compare the ability to detect group differences
in cortical atrophy rate between FTLD subjects and controls as well as AD sub-



Algorithm 2 SNLCG sub-algorithm for eigenanatomy.

Input X,v−i ,v
s−
i , γ.

b← v−i
xk ← vs−

i

rk ← ( b − XT ( X xk ) ) . Use the gradient of the quadratic term.
pk ← rk
∆E ←∞
while ∆E > 0 do

αk ← 〈 pk, XT X xk 〉 . 〈·, ·〉 denotes inner product.
xk+1 ← xk + αkpk

xk+1 ← S(xk+1, γ)
. Project xk+1 to the sparse solution space given by the objective function.

rk+1 ← S( b − XT ( X xk+1 ) , γ) . Use the gradient of the quadratic term.
. Project rk+1 to the sparse solution space given by the objective function.

βk ← ‖rk+1‖2/‖rk‖2 . Standard conjugate gradient definitions below.
pk+1 = rk+1 + βk ∗ pk
∆E ← ‖rk‖ − ‖rk+1‖
rk ← rk+1;xk ← xk+1;pk ← pk+1.

end while

jects and controls. This analysis shows specificity of the approach and biological
plausibility in two different neurodegenerative disorders.

We passed the same input dataset to all methods. The data consisted of
unbiased voxel-wise measures of annualized atrophy rate in the cortex of all pa-
tients normalized to a group template, as described elsewhere [13]. The regression
model employed for all methods is summarized ( in R syntax) as: atrophy-rate
≈ 1+ diagnosis + education + interval-between-images + disease-duration +
gender. “Diagnosis” is the predictor of interest i.e. we test whether the pres-
ence of disease predicts atrophy rate given the presence of the covariates. The
atrophy-rate is either a vector of voxel-wise measures or a basis function projec-
tion against the original atrophy rate image matrix X i.e. Xvp

i . The latter case
is used for classic SVD, PMD, soft-SVD in addition to eigenanatomy. We define
significance as a q-value < 0.05 where a q-value is a false discovery rate corrected
p-value. For PMD and SVD, we tested n different atrophy rates ( one for each
eigenvector ) where n is number of subjects. For eigenanatomy and soft-SVD,
we used 2n predictors as suggested by design in the algorithm. For VBM, we
tested all 50,194 voxels (the number of columns in X).

For the FTLD subjects and the AD subjects, when classic SVD projections
were used as measures of atrophy rate, no significant predictors emerged. The
same is true for the PMD method—although we note the caveat that, poten-
tially, a more exhaustive parameter search may have resulted in better PMD
results. Both univariate VBM and soft-SVD identify significant effects although
the minimum q-value and extensiveness of both soft-SVD and VBM are far less
than eigenanatomy. This is particularly true for the FTLD subjects for which
VBM only produces a small 20 voxel cluster that survives correction. The results
are summarized further in Figure 2. Detailed clinical interpretation is beyond
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Fig. 2: Statistical comparison: Eigenanatomy detects the most effects and also
with smallest p-values (FTLD: q < 0.0015, AD: q < 0.002) versus the next best
soft-SVD (FTLD: q < 0.0035, AD: q < 0.009). Different colors represent different
eigenvectors / predictors. Note that multiple disjoint, but related, voxel clusters
(i.e. a network) may be involved in an eigenanatomy vector. VBM detects 20
voxels in FTLD (q < 0.015 ). In AD, univariate results are more robust, likely
due to the widespread nature of AD atrophy, and 1382 significant voxels (q <
0.0270) were detected.

the scope of the paper but the results, overall, are coincident with what is known
about these disorders. In particular, the largest atrophy rate in FTLD was in
right orbitofrontal cortex. For AD, this region was in the precuneus.

Conclusion

We detailed the eigenanatomy theory and algorithm and showed that eige-
nanatomy improves image reconstruction from a sparse set of anatomical basis
functions. We showed that eigenanatomy also improves detection power for de-
tecting group differences in longitudinal cortical change relative to SVD, PMD
and univariate VBM. We note that showing that a method increases detection
power does not comprise sufficient validation. This approach is not limited to
longitudinal analysis and may be applied in a variety of morphometry contexts.
Future extensions to the basic eigenanatomy algorithm given here will include
network interpretations, exploration of alternatives to the SNLCG algorithm,
alternative penalty terms and an automation of parameter selection.
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