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Abstract

Graph-based semi-supervised learning (SSL)
methods usually consist of two stages: in the
first stage, a graph is constructed from the set
of input instances; and in the second stage,
the available label information along with the
constructed graph is used to assign labels to
the unlabeled instances.

Most of the previously proposed graph con-
struction methods are unsupervised in na-
ture, as they ignore the label information al-
ready present in the SSL setting in which
they operate. In this paper, we explore
how available labeled instances can be used
to construct a better graph which is tai-
lored to the current classification task. To
achieve this goal, we evaluate effectiveness
of various supervised metric learning algo-
rithms during graph construction. Addi-
tionally, we propose a new metric learning
framework: Inference Driven Metric Learn-
ing (IDML), which extends existing super-
vised metric learning algorithms to exploit
widely available unlabeled data during the
metric learning step itself. We provide exten-
sive empirical evidence demonstrating that
inference over graph constructed using IDML
learned metric can lead to significant reduc-
tion in classification error, compared to infer-
ence over graphs constructed using existing
techniques. Finally, we demonstrate how ac-
tive learning can be successfully incorporated
within the the IDML framework to reduce
the amount of supervision necessary during
graph construction.

Appearing in the Fourth North East Student Colloquium on
Artificial Intelligence, Amherst, MA, 2010. Copyright 2010
by the author(s)/owner(s).

1. Introduction

Supervised machine learning algorithms have been
quite successful in a variety of domains, ranging from
Natural Language Processing to Bioinformatics. Un-
fortunately, such algorithms require large amounts of
labeled data which is expensive and time consuming
to prepare. To addresses this issue, recent research
has focused on Semi-Supervised Learning (SSL) algo-
rithms, which learn from limited amounts of labeled
data combined with widely available unlabeled data.
In particular, graph based SSL algorithms have re-
cently been successfully used in different tasks, e.g.
the work of Subramanya & Bilmes (2009b).

Given a set of instances, some of which are labeled
while the rest are unlabeled, most graph based SSL
algorithms first construct a graph where each node
corresponds to an instance. Similar nodes are con-
nected by an edge, with edge weight encoding the de-
gree of similarity. Once the graph is constructed, the
nodes corresponding to labeled instances are injected
with the corresponding label. Using this initial la-
bel information along with the graph structure, graph
based SSL algorithms assign labels to all unlabeled
nodes in the graph. Most of the graph based SSL al-
gorithms are iterative and also parallelizable, making
them suitable for SSL setting where vast amounts of
unlabeled data is usually available. Examples of a few
graph-based SSL algorithms include Gaussian Ran-
dom Fields (GRF) (Zhu et al., 2003), Local and Global
Consistency (LGC) (Zhou et al., 2004), Manifold Reg-
ularization (MR) (Belkin et al., 2006), Quadratic Cri-
teria (QR) (Bengio et al., 2006), Graph Transduc-
tion via Alternating Minimization (GTAM) (Wang
et al., 2008), Adsorption and its variants (Talukdar &
Crammer, 2009), Measure Propagation (Subramanya
& Bilmes, 2009a).

Most of the graph based SSL algorithms mentioned
above concentrate primarily on the label inference
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part, i.e. assigning labels to nodes once the graph has
already been constructed, with very little emphasis on
construction of the graph itself. Only recently, the is-
sue of graph construction has begun to receive atten-
tion (Wang & Zhang, 2006; Jebara et al., 2009; Daitch
et al., 2009). A b-matching (BM) based method for
regular graph construction is presented by Jebara et al.
(2009), where each node in the constructed graph is
required to have the same degree (b). Daitch et al.
(2009) proposed that each node is required to have
a minimum weighted degree of 1, which is relaxed in
some cases. Both of these methods emphasize on con-
structing graphs which satisfy certain structural prop-
erties (e.g. degree constraints on each node). Since
our focus is on SSL, a certain number of labeled in-
stances are available at our disposal. However, the
graph construction methods mentioned above are all
unsupervised in nature, i.e. they do not utilize avail-
able label information during the graph construction
process. In fact, this is left as an open question for
future work in (Daitch et al., 2009). In this paper,
we propose a fill to gap and explore how the available
label information can be used for graph construction
in graph based SSL. In particular, we focus on learn-
ing a distance metric using available label information,
which can then be used to set the edge weights on the
constructed graph.

Once the nodes in a graph are fixed, the rest of
graph construction process reduces to setting the edge
weights on a complete graph, with an edge weight of 0
encoding absence of the corresponding edge. Over the
years, several supervised metric learning algorithms
have been developed, with Information-theoretic Met-
ric Learning (ITML) (Davis et al., 2007) and large
margin distance metric learning (LMNN) (Weinberger
& Saul, 2009) being two recent and state-of-the-art
metric learning methods. The distance metric learned
by such methods can be used to compute similarity1

between a pair of instances, and subsequently set as
the similarity edge weight on the edge connecting the
instances in the graph.

In this paper, we make the following contributions:

1. In contrast to previously proposed unsupervised
graph construction methods which ignore already
available label information, we empirically vali-
date effectiveness of supervised distance metric
learning algorithms during graph construction for
graph based SSL.

2. In order to exploit widely available unlabeled data
1By using an appropriate distance to similarity map-

ping, e.g. Gaussian kernel which we review in Section 5.

during distance metric learning, we propose a new
metric learning framework: Inference Driven Met-
ric Learning (IDML). We provide extensive em-
pirical evidence demonstrating that inference over
graph constructed using IDML learned metric can
lead to significant reduction in classification error,
compared to inference over graphs constructed us-
ing existing techniques.

3. Finally, we demonstrate how active learning can
be incorporated within the IDML framework to
reduce the amount of supervision necessary dur-
ing graph construction.

The paper is organized as follows: in Section 3, we
review two recently proposed metric learning algo-
rithms, ITML and LMNN; in Section 4, we present
the Inference-Driven Metric Learning (IDML) frame-
work; in Section 5, we show how learned distance met-
rics can be used to construct graphs, and subsequently
perform label inference on such graphs; in Section 6,
we report experimental results on various real-world
datasets; and finally in Section 7, we present conclud-
ing remarks with directions for future work.

2. Notations

Let X be the d × n matrix of n instances in a d-
dimensional space. Out of the n instances, nl instances
are labeled, while the remaining nu instances are un-
labeled, with n = nl +nu. G = (V,E,W ) is the graph
we are interested in constructing; where V is the set
of vertices with |V | = n, E is the set of edges, and W
is the symmetric n×n matrix of edge weights that we
would like to learn. Wij is the weight of edge (i, j),
and also the similarity between instances xi and xj .
S is a n× n diagonal matrix with Sii = 1 iff instance
xi is labeled. m is the total number of labels. Y is
the n × m matrix storing training label information,
if any. Ŷ is the n × m matrix of estimated label in-
formation, i.e. output of any inference algorithm (e.g.
see Section 5). A is a positive definite matrix of size
d × d, which parametrizes the (squared) Mahalanobis
distance (Equation 1).

3. Metric Learning Review

We now review some of the recently proposed super-
vised methods for learning Mahalanobis distance be-
tween instance pairs. We shall concentrate on learning
matrix A which parametrizes the distance, dA(xi, xj),
between instances xi and xj .

dA(xi, xj) = (xi − xj)>A(xi − xj) (1)
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Since A is positive definite, we can decompose it as
A = P>P , where P is another matrix of size d × d.
We can then rewrite Equation 1 as,

dA(xi, xj) = (xi − xj)>P>P (xi − xj)
= (Pxi − Pxj)>(Pxi − Pxj)
= dI(Pxi, Pxj) (2)

Hence, computing Mahalanobis distance w.r.t. A is
equivalent to first projecting the instances into a new
space using an appropriate transformation matrix P
and then computing Euclidean distance in the linearly
transformed space.

3.1. Information-Theoretic Metric Learning
(ITML)

Information-Theoretic Metric Learning (ITML)
(Davis et al., 2007) assumes the availability of
prior knowledge about inter-instance distances. In
this scheme, two instances are considered similar if
the Mahalanobis distance between them is upper
bounded, i.e. dA(xi, xj) ≤ u, where u is a non-trivial
upper bound. Similarly, two instances are considered
dissimilar if the distance between them is larger
than certain threshold l, i.e. dA(xi, xj) ≥ l. Similar
instances are represented by set S, while dissimilar
instances are represented by set D.

In addition to prior knowledge about inter-instance
distances, sometimes prior information about the ma-
trix A, denoted by A0, itself may also be available. For
example, Euclidean distance (i.e. A0 = I) may work
well in some domains. In such cases, we would like
the learned matrix A to be as close as possible to the
prior matrix A0. ITML combines these two types of
prior information, i.e. knowledge about inter-instance
distances, and prior matrix A0, in order to learn the
matrix A by solving the optimization problem shown
in (3).

min
A�0

Dld(A,A0) (3)

s.t. tr{A(xi − xj)(xi − xj)>} ≤ u, ∀(i, j) ∈ S
tr{A(xi − xj)(xi − xj)>} ≥ l, ∀(i, j) ∈ D

where Dld(A,A0) = tr(AA−1
0 )− log det(AA−1

0 )− n, is
the LogDet divergence.

It may not always be possible to exactly solve the op-
timization problem shown in (3). To handle such situ-
ations, slack variables may be introduced to the ITML
objective. Following the notation in (Davis et al.,
2007), let c(i, j) be the index of the (i, j)th constraint,

and let ξ be a vector of length |S|+ |D| of slack vari-
ables. ξ is initialized to ξ0, whose components equal u
for similarity constraints, and l for dissimilarity con-
straints. The modified ITML objective involving slack
variables is shown in (4).

min
A�0,ξ

Dld(A,A0) + γ ·Dld(ξ, ξ0) (4)

s.t. tr{A(xi − xj)(xi − xj)>} ≤ ξc(i,j), ∀(i, j) ∈ S
tr{A(xi − xj)(xi − xj)>} ≥ ξc(i,j), ∀(i, j) ∈ D

where γ is a hyperparameter which determines the im-
portance of violated constraints. To solve the opti-
mization problem in (4), an algorithm involving re-
peated Bregman projections is presented in (Davis
et al., 2007), which we use for the experiments reported
in this paper.

3.2. Large Margin Nearest Neighbor (LMNN)

A large margin based method for learning a Maha-
lanobis distance metric from labeled instances is pre-
sented in (Weinberger & Saul, 2009). The objective
here is to learn a linear transformation of input in-
stances so that the k nearest neighbors (in the lin-
early transformed space) of each instance share the
same label. This metric learning algorithm is tuned
towards achieving good performance on k-NN classifi-
cation. From now on, we shall refer to this large mar-
gin metric learning algorithm in (Weinberger & Saul,
2009) as LMNN.

A set of labeled instances and a hyperparameter k is
input to LMNN. For each labeled instance, LMNN first
determines k target neighbors. Target neighbors of an
instance xi are the instances that LMNN desires to be
closest to xi in the linearly transformed target space.
The target neighbors are fixed at the start of the al-
gorithm and are not changed subsequently. In many
domains, the target neighbors may be selected based
on prior knowledge. Another alternative is to select
the target neighbors based on Euclidean neighbors in
the original space, which is the strategy we use for the
experiments in this paper (as in (Weinberger & Saul,
2009)).

Once the target neighbors for each instance is deter-
mined, LMNN learns a linear transformation so that
for each point, the closest point from a different class
(called impostor) is further away by a margin from the
farthest target neighbor of the point, with all distances
measured in the linearly transformed space. In other
words, an instance’s target neighbors define a neigh-
borhood where instances from other classes are not
allowed. In order to achieve this goal, LMNN solves a
convex optimization problem which is reproduced from
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(Weinberger & Saul, 2009) in (5).

min
A,ξ

(1− µ)
∑

i,j∈N(i)

dA(xi, xj) +

µ
∑

i,j∈N(i),l

(1− yil) ξijl (5)

s.t. dA(xi, xl)− dA(xi, xj) ≥ 1− ξijl (6)
A � 0, ξijl ≥ 0

where dA is the Mahalanobis distance w.r.t A as shown
in Equation 1, N(i) consists of xi’s target neighbors,
{yil} are indicator variables with yil = 1 iff yi = yl,
{ξijl} are slack variables which allow violation of the
large margin constraint (6), but with a cost whose
contribution to the objective is controlled by the hy-
perparameter µ. The large margin constraint (6) en-
forces the requirement that an impostor, xl (impos-
tors are indexed by l), should be at a safe distance
away from xi. The first term in (5) represents the fact
that LMNN tries to pull together all instances within
a target neighborhood. As noted by Weinberger &
Saul (2009), as most input instance pairs, xi and xl,
are likely to be well separated from each other, most
of the slack variables {ξijl} are never going to get as-
signed positive values. This sparseness property can
be exploited to develop faster, special purpose solver
to optimize the LMNN objective shown above (Wein-
berger & Saul, 2009).

After optimizing the LMNN objective, we obtain a
positive semi-definite matrix A which can be used to
compute the Mahalanobis distance between any two
instances using Equation 1.

4. Inference Driven Metric Learning
(IDML)

The metric learning algorithms we have reviewed so
far, ITML in Section 3.1 and LMNN in Section 3.2,
are supervised in nature, and hence they do not ex-
ploit widely available unlabeled data. In this sec-
tion, we present Inference Driven Metric Learning
(IDML) (Algorithm 1), a metric learning framework
which combines existing supervised metric learning al-
gorithm (such as ITML or LMNN) along with trasn-
ductive graph-based label inference to learn a new dis-
tance metric from labeled as well as unlabeled data
combined. In self-training styled iterations, IDML al-
ternates between metric learning and label inference;
with output of label inference used during next round
of metric learning, and so on.

IDML starts out with the assumption that existing

Algorithm 1 Inference Driven Metric Learning
(IDML)
Input: instances X, training labels Y , training in-
stance indicator S, label entropy threshold β, neigh-
borhood size k
Output: Mahalanobis distance parameter A

1: Ŷ ← Y , Ŝ ← S
2: repeat
3: A←MetricLearner(X, Ŝ, Ŷ )
4: W ← ConstructKnnGraph(X,A, k)
5: Ŷ

′ ← GraphLabelInference(W, Ŝ, Ŷ )
6: U ← SelectLowEntInstances(Ŷ

′
, Ŝ, β)

7: Ŷ ← Ŷ + UŶ
′

8: Ŝ ← Ŝ + U
9: until convergence (i.e. Uii = 0, ∀i)

10: return A

supervised metric learning algorithms, such as ITML
and LMNN, can learn a better metric if the number
of available labeled instances is increased. Since we
are focusing in the SSL setting with nl labeled and nu
unlabeled instances, the idea is to automatically label
the unlabeled instances using a graph based SSL al-
gorithm, and then include instances with low assigned
label entropy (i.e. high confidence label assignments)
in the next round of metric learning. The number
of instances added in each iteration depends on the
threshold β2. This process is continued until no new
instances can be added to the set of labeled instances,
which can happen when either all the instances are
already exhausted, or when none of the remaining un-
labeled instances can be assigned labels with high con-
fidence.

The IDML framework is presented in Algorithm 1. In
Line 1, any supervised metric learner, such as ITML
or LMNN, may be used as the MetricLearner.
Using the distance metric learned in Line 1, a
new k-NN graph is constructed in Line 1, whose
edge weight matrix is stored in W . In Line 1,
GraphLabelInference optimizes over the newly
constructed graph the GRF objective (Zhu et al., 2003)
shown in (7).

min
Ŷ ′

tr{Ŷ
′>LŶ

′
}, s.t. ŜŶ = ŜŶ

′
(7)

where L = D −W is the (unnormalized) Laplacian,
and D is a diagonal matrix with Dii =

∑
jWij . The

constraint, ŜŶ = ŜŶ
′
, in (7) makes sure that labels

2During the experiments in Section 6, we set β = 0.05
and observed that the low entropy instances, which are
selected for inclusion in next iteration of metric learning,
are usually classified with fairly high accuracy.
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on training instances are not changed during infer-
ence. In Line 1, a currently unlabeled instance xi (i.e.
Ŝii = 0) is considered a new labeled training instance,
i.e. Uii = 1, for next round of metric learning if the
instance has been assigned labels with high confidence
in the current iteration, i.e. if its label distribution
has low entropy (i.e. Entropy(Ŷ

′

i:) ≤ β). Finally in
Line 1, training instance label information is updated.
This iterative process is continued till no new labeled
instance can be added, i.e. when Uii = 0 ∀i. IDML
returns the learned matrix A which can be used to
compute Mahalanobis distance using Equation 1.

Lemma : IDML (Algorithm 1) will terminate after at
most n iterations.

Proof : The GraphLabelInference method used
in IDML ensures that labels of already labeled in-
stances are not changed (see (7)). Hence, once an in-
stance is assigned a label in one of the iterations (Line
1), its label is not changed in all subsequent iterations.
Since there are only finitely many points, hence only
a finite number of new points can be selected in Line
1 of IDML. Hence, IDML can iterate for at most n
iterations, where n is the total number of instances.

4.1. Relationship to Other Methods

IDML is similar in spirit to the EM-based HMRF-
KMeans algorithm in (Bilenko et al., 2004), which fo-
cuses on integrating constraints and metric learning for
semi-supervised clustering. However, there are crucial
differences. Firstly, the inference algorithm in (Bilenko
et al., 2004) is parametric (k-Means), while the infer-
ence in IDML is non-parametric (graph based). Sec-
ondly, and more importantly, the label constraints in
(Bilenko et al., 2004) are hard constraints which are
fixed a-priori and are not changed during EM itera-
tions. In case of IDML , the graph structure induced in
each iteration (Line 1 in Algorithm 1) imposes a Man-
ifold Regularization (MR) (Belkin et al., 2006) style
smoothing penalty, as shown in (7). Hence, compared
to the hard and fixed constraints in HMRF-KMeans,
IDML constraints are soft and new constraints are
added in each iteration of the algorithm.

The main difference that separates IDML from previ-
ous work on supervised metric learning (Davis et al.,
2007; Weinberger & Saul, 2009; Jin et al., 2009) is the
use of unlabeled data during metric learning. More-
over, in all of these previously proposed algorithms,
the constraints used during metric learning are fixed
a-priori, as they are usually derived from labeled in-
stances which don’t change during the course of al-
gorithm; while the constraints in IDML are adaptive
and new constraints are added in each iteration, when

automatically labeled instances are included in each
iteration (Line 1). In Section 6, we shall see experi-
mental evidence that these additional constraints can
be quite effective in improving IDML’s performance
compared to ITML or LMNN.

The distance metric learned using IDML can be used
to compute inter-instance distance in b-matching (BM)
(Jebara et al., 2009), and in this way the two ap-
proaches can compliment one another.

5. Graph Construction & Inference

Gaussian kernel (Zhu et al., 2003; Belkin & Niyogi,
2008), a widely used measure of similarity between
data instances, can be used to compute edge weights
as shown in Equation 8.

Wij = exp
(
−dA(xi, xj)

2σ2

)
(8)

where dA(xi, xj) is the distance measure between in-
stances xi and xj , and σ is the kernel bandwidth pa-
rameter. By setting A = I, we get the standard Eu-
clidean distance in input space, which has traditionally
been used in previous work (Zhu et al., 2003). Instead,
by using A as learned by metric learning algorithms in
Section 3.1, 3.2 or 4, we can define a similarity metric
which is tailored to the current classification task.

Setting edge weights directly using Equation 8 will re-
sult in a complete graph, where any two pair of nodes
will be connected with a positively weighted edge.
This may be undesirable as a dense graph may slow
down any subsequent inference. We may sparsify the
graph by retaining only edges to k nearest neighbors of
each node, and dropping all other edges (i.e. setting
corresponding edge weights to 0), a commonly used
graph sparsification strategy. As an alternative, other
recently proposed method (e.g. b-matching (Jebara
et al., 2009)) may also be used to generate a sparse
graph.

Inference: With the graph G = (V,E,W ) con-
structed, we may now perform inference over this
graph to assign labels to all nu unlabeled nodes. Any
of the several graph based SSL algorithms mentioned
in Section 1 may be used for this task. For the ex-
periments in this paper, we use the GRF algorithm
(Zhu et al., 2003) which minimizes the optimization
problem shown in (7).

6. Experiments

In this section, we evaluate the importance of met-
ric learning for constructing graphs, where the con-
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Dataset Type Dimension Balanced
Amazon Real-World 132553 Yes

Newsgroups Real-World 32965 Yes
Reuters Real-World 10964 Yes
EnronA Real-World 5802 No

Text Real-World 11960 Yes
USPS Real-World 241 No
BCI Real-World 117 Yes
Digit Artificial 241 No

Table 1. Description of datasets used in experiments in
Section 6. All datasets were binary, with 1500 total in-
stances in each, except BCI which had 400 instances.

structed graphs, along with the labeled instances, are
used to classify initially unlabeled instances. We eval-
uate performance using classification error (i.e. 1
- accuracy) . We use Gaussian kernel to set edge
weights, followed by k-NN graph sparsification, as
described in Section 5. The hyperparameters k ∈
{2, 5, 10, 50, 100, 200, 500, 1000} and the Gaussian ker-
nel bandwidth multiplier3, ρ ∈ {1, 2, 5, 10, 50, 100}, are
tuned on a separate development set. In all experi-
ments, GRF (see Section 5) is used. Similarly, we use
standard implementations of ITML and LMNN made
available by respective authors. Brief description of
the datasets used for experiments in this section is pre-
sented in Table 1; the first four datasets are obtained
from (Crammer et al., 2009), while the rest are from
(Chapelle et al., 2006).

6.1. Results on Real-World Datasets

In this section, we compare the following methods of
estimating A, which in turn is used in Equation 8 to
estimate edge weights:

Original: We set A = Id×d, i.e. the data is not
transformed and Euclidean distance in the input
space is used to compute distance between in-
stances.

RP: The data is first projected into a lower di-
mensional space of dimension d

′
= logn

ε2log 1
ε

using
the Random Projection (RP) method (Bingham
& Mannila, 2001). We set A = R>R, where R
is the projection matrix used by RP. ε was set to
0.25 for the experiments in Section 6.1.

PCA: Instances are first projected into a lower
dimensional space using Principal Components
Analysis (PCA) . For all experiments, dimension-

3σ = ρ σ0, where ρ is the tuned multiplier, and σ0 is set
to average distance.

ality of the projected space was set at 2504. We
set A = P>P , where P is the projection matrix
generated by PCA.

LMNN: A is learned by applying LMNN (see
Section 3.2) on the PCA projected space (above).

ITML: A is learned by applying ITML (see Sec-
tion 3.1) on the PCA projected space (above).

IDML-LM: A is learned by applying IDML (Al-
gorithm 1) on the PCA projected space (above);
with LMNN used as MetricLearner in IDML.

IDML-IT: A is learned by applying IDML
(Algorithm 1) (see Section 4) on the PCA
projected space (above); with ITML used as
MetricLearner in IDML.

Experimental results on datasets in Table 1 with 50
and 100 labeled instances (nl) are shown in Tables 2
and 3, respectively. From these we observe that, con-
structing a graph using a learned metric can signifi-
cantly improve performance (in 13 out of 16 cases).
We consistently find graphs constructed using IDML-
IT to be the most effective. This is particularly true
in case of high-dimensional datasets where distances in
the original input space are often unreliable because of
curse of dimensionality.

We tried our best to include comparisons with graphs
constructed using b-matching (Jebara et al., 2009),
however that often resulted in disconnected graphs
which the GRF code we used (obtained from Zhu et al.
(2003)) was unable to handle.

6.2. Sensitivity to Noisy Features

Dataset dim Original ITML IDML-IT
Synth-2 2 0.1188 0.0431 0.0163
Synth-5 5 0.3894 0.1275 0.1156
Synth-10 10 0.4669 0.2813 0.2025
Synth-20 20 0.4900 0.3000 0.2850

Table 4. Results on synthetic datasets (see Section 6.2)
with nl = 100. All results are averaged over four trials.

In order to evaluate sensitivity of IDML-IT, the best
performing method from Section 6.1, to input data
noise and increasing dimensions, we generated four
synthetic datasets: Synth-{2, 5, 10, 20}, each consist-
ing of 500 instances in Rd (d = 2, 5, 10, 20, respec-
tively), where the first two dimensions were sampled

4PCA was not performed on USPS, BCI and Digit as
they already had dimension lower than 250.
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Datasets Original RP PCA ITML LMNN IDML-LM IDML-IT
Amazon 0.4686 0.4681 0.2329 0.1542 0.2069 0.2065 0.1537

Newsgroups 0.3648 0.3778 0.3490 0.1791 0.2860 0.2791 0.1650
Reuters 0.2912 0.5016 0.5016 0.1300 0.4991 0.4003 0.1264
EnronA 0.3514 0.3514 0.3200 0.1855 0.3124 0.3096 0.1671

Text 0.4541 0.4954 0.4835 0.3140 0.3297 0.3247 0.3121
USPS 0.1536 0.1667 – 0.1484 0.1388 0.1388 0.1467
BCI 0.4693 0.4678 – 0.4264 0.4122 0.4093 0.4196
Digit 0.0246 0.0357 – 0.0438 0.1186 0.0991 0.0381

Table 2. Comparison of transductive classification performance over graphs constructed using different methods (see
Section 6.1), with nl = 50 and nu = 1450. All results are averaged over four trials. IDML-LM and IDML-IT are the
proposed methods.

Datasets Original RP PCA ITML LMNN IDML-LM IDML-IT
Amazon 0.4046 0.3964 0.1554 0.1418 0.2405 0.2004 0.1265

Newsgroups 0.3407 0.3871 0.3098 0.1664 0.2172 0.2136 0.1664
Reuters 0.2928 0.3529 0.2236 0.1088 0.3093 0.2731 0.0999
EnronA 0.3246 0.3493 0.2691 0.2307 0.1852 0.1707 0.2179

Text 0.4523 0.4920 0.4820 0.3072 0.3125 0.3125 0.2893
USPS 0.0639 0.0829 – 0.1096 0.1336 0.1225 0.0834
BCI 0.4508 0.4692 – 0.4217 0.3058 0.2967 0.4081
Digit 0.0218 0.0250 – 0.0281 0.1186 0.0877 0.0281

Table 3. Comparison of transductive classification performance over graphs constructed using different methods (see
Section 6.1), with nl = 100 and nu = 1400. All results are averaged over four trials. IDML-LM and IDML-IT are the
proposed methods.

from a 45o rotated Gaussian distribution with stan-
dard deviation 1. The remaining d − 2 dimensions
were sampled independently from Gaussian distribu-
tions N(0, 2). Hence, in these datasets, only the first
two dimensions are informative, while the rest of the
dimensions just add noise.

Experimental results on these synthetic datasets with
100 labeled instances are presented in Table 4. From
Table 4, we observe that label inference over graphs
constructed using IDML-IT achieve lowest classifica-
tion error across all datasets. We also observe that as
the number of noisy dimensions were increased (from
0 in Synth-2 to 18 in Synth-20), performance in case
of Original deteriorated significantly, while IDML-IT
is much more resilient to noise. This demonstrates the
fact that the learned distance metric is able to filter
out the noisy dimensions and concentrate more on the
first two informative dimensions, which is essential in
these datasets. It is interesting to note that IDML-IT
is very effective even in the absence of noise (Synth-2).

6.3. Active Learning

In all the experiments reported so far in Sections 6.1
and 6.2, the nl training instances, usually labeled by

humans, are fixed at the start and are not changed
during course of the algorithms. In case of IDML-LM
and IDML-IT, this initial set of labeled instances is
augmented by adding automatically labeled instances
with low label entropy (Line 1 in Algorithm 1).

In this section, we take an active learning view and ex-
plore whether the instances to be labeled (by a human
or an oracle) can be actively selected using a modified
version of IDML-IT, which we call IDML-IT-Active.
Instead of adding instances with low label entropy as
in IDML-IT; IDML-IT-Active selects, at each itera-
tion, top-r instances with highest label entropy which
are then labeled by a human or an oracle. These addi-
tional r oracle labeled (as opposed to automatic label-
ing in IDML-IT) instances are used in the next iter-
ation of metric learning. In Figure 1, we compare la-
bel inference over graphs constructed using IDML-IT-
Active, to graphs constructed in the original space (i.e.
A = I) with equivalent number of randomly selected
and labeled instances, called Random-Active in Figure
1. Across the three datasets, we observe that 25-50
actively selected instances using IDML-IT-Active per-
forms better than 125 randomly selected and labeled
instances, thereby drastically reducing the amount of
supervision necessary to attain a certain level of clas-
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Figure 1. Results from active learning experiments in Section 6.3. All results are averaged over four trials. Active learning
using IDML-IT-Active is the bottom line.

sification performance.

7. Conclusion

In this paper, we explored how labeled instances, avail-
able in the SSL setting, can be used to construct a
better graph for improved classification accuracy in
graph based SSL. We demonstrated effectiveness of
various supervised metric learning algorithms to learn
distance metrics for graph construction, and subse-
quent inference over such constructed graphs. To the
best of our knowledge, this is the first study of its kind
where effectiveness of metric learning for graph con-
struction is studied. Additionally, we proposed a new
metric learning framework: Inference Driven Metric
Learning (IDML), which extends existing supervised
metric learning algorithms to exploit widely available
unlabeled data during the metric learning step itself.
Through a set of extensive experiments on synthetic as
well as various real-world datasets, we demonstrated
that inference over graphs constructed using IDML
can lead to significant reduction in classification er-
ror, compared to inference over graphs constructed ei-
ther with a supervised metric learner in isolation, or
without using any label information at all. Finally, we
demonstrated how labeled instances can be actively
selected within the the IDML framework to reduce
the amount of supervision necessary during graph con-
struction.

Encouraged by these promising initial results, we plan
to investigate further into the Inference Driven Metric
Learning (IDML) framework, and in particular pose
it as an optimization of a regularized metric learning
objective.
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