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Firstly, we would like to state some lemmas and give some properties of Subsampled Randomized
Hadamard Transform (SRHT), which will be pivotal in proving our theorems for the fixed design
setting.

1 Properties of SRHT

As described in the paper, let H be the scaled Hadamard matrix of size p × p, D be the diagonal
matrix of size p × p with i.i.d. rademacher random variable on the diagonal and let R ∈ psubs × p
be the subsampling matrix. So, Θ = RHD ∈ psubs × p is the SRHT matrix. All the norms used in
this paper and supplementary material are `2 norms for a vector and the spectral norm for a matrix
unless specified otherwise. The statement of the lemma is as follows:

Lemma 1. Let X be an n × p (n � p) matrix where X>X = n · Ip. Let Θ be a nsubs × n SRHT
matrix where nsubs is the subsampling size. Then with failure probability at most δ + n

ep ,

‖(ΘX)>ΘX/nsubs −X>X/n‖ ≤

√
c log( 2p

δ )p

nsubs
(1)

Remark 1. The idea and tools for the proof of this lemma come from [1] and [2]. Here we char-
acterize the spectral norm error between the matrix multiplication with and without SRHT as a
function of subsample size nsubs and matrix dimension p.

Before proving Lemma 1 we need to state a few lemmas from random matrix theory. Next Lemma
is Lemma 3.3 in [1].

Lemma 2. (Row norms after Randomized Hadamard Transform) Let V be an n × p matrix with
orthonormal columns. Then HDV is also an n× p matrix with orthonormal columns and

P

(
max

j=1,2...n
‖e>j (HDV)‖ ≥

√
p

n
+

√
8 log(βn)

n

)
≤ 1

β
(2)

Remark 2. In our setting p is reasonably large, though it’s much smaller than n. Let β = ep

n , we
have maxj=1,2...n ‖e>j (HDV)‖ ≤ 4

√
p
n holds with failure probability at most n

ep . In particular,
when log(n)� p the failure probability is almost 0.

Next lemma is Lemma 3.4 in [1] the proof of which comes from the matrix Chernoff bound in [2].

Lemma 3. (Spectral Bounds for Row Sampling). Let W be an n × p matrix with orthonormal
columns. Define M = n ·maxj=1,2...n ‖eTj W‖2. Draw nsubs rows from W without replacement.
Let R ∈ nsubs × n be the matrix corresponding to subsampled rows. Then the smallest and largest
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spectral value of the subsampled matrix RW are bounded by√
(1− δ)l

n
≤ σp(RW) (3)√

(1 + η)l

n
≥ σ1(RW) (4)

with failure probability at most

p ·
(

e−δ

(1− δ)1−δ

)nsubs/M
+ p ·

(
eη

(1 + η)1+η

)nsubs/M
(5)

Lemma 3 can be simplified a lot for our purpose.
Corollary 1. Let W be an n × p matrix with orthonormal columns. Define M = n ·
maxj=1,2...n ‖e>j W‖2. Draw nsubs rows from W without replacement. Let R ∈ nsubs × n be
the matrix corresponding to the subsampled rows. Then the spectral values of the subsampled ma-
trix RW are bounded by √

(1− δ)l
n

≤ σp(RW) (6)√
(1 + δ)l

n
≥ σ1(RW) (7)

with failure probability at most

2p · e
−cδ2nsubs

M (8)

for some fixed positive constant c.

Proof. By the Taylor’s expansion of log(1− δ) and log(1 + δ)

log

(
e−δ

(1− δ)1−δ

)
= −δ − (1− δ) log(1− δ) ≤ −δ2

log

(
eδ

(1 + δ)1+δ

)
= δ − (1 + δ) log(1 + δ) ≤ −δ2/4

replace the e−δ

(1−δ)1−δ and eη

(1+η)1+η term in lemma 2 with e−cδ
2

and e−cη
2

. Set η = δ completes the
proof.

Now we can prove Lemma 1:

Proof. Θ = RHD. Let W = HDX, note that the columns of X/
√
n are orthonormal. Remark 2

shows

max
j=1,2...n

‖e>j W/
√
n‖ ≤ 4

√
p

n
(9)

holds with failure probability n
ep . Let M = 16p = n ·maxj=1,2...n ‖e>j W/

√
n‖2. Assume equation

9 holds, Corollary 1 implies the spectral norm of ΘX/
√
n = RW/

√
n can be bounded by√

(1− ε)nsubs
n

≤ σp(ΘX/
√
n) (10)√

(1 + ε)nsubs
n

≥ σ1(ΘX/
√
n) (11)

with failure probability at most δ where ε =

√
c log( 2p

δ )p

nsubs
. Equations 10, 11 implies that the singular

values of the symmetric matrix (ΘX)>ΘX
n lie between [ (1−ε)nsubs

n , (1+ε)nsubs
n ], or in other words,
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the singular values of the symmetric matrix (ΘX)>ΘX
nsubs

lies between [1 − ε, 1 + ε]. Noticing that
X>X/n is a p × p identity matrix, so Equations 10, 11 directly imply Equation 1. Finally let’s
compute the failure probability, i.e. the probability that the Equations 10, 11 don’t hold. By Lemma
1,

P (Equation 9 fails) ≤ n

ep
(12)

By corollary 1,
P (One of Equations 10, 11 fail|Equation 9 holds) ≤ δ (13)

which directly implies

P (One of Equations 10, 11 fail and Equation 9 holds) ≤ δ (14)

Equations 12, 14 imply

P (One of Equations 10, 11 fail) ≤ P (One of Equations 10, 11 fail and Equation 9 holds)
+P (Equation 9 fails )

≤ n

ep
+ δ
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