
A New Approach to Lexical Disambiguation of Arabic Text
Rushin Shah

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213, USA
rnshah@cs.cmu.edu

Paramveer S. Dhillon, Mark Liberman,
Dean Foster, Mohamed Maamouri

and Lyle Ungar
University of Pennsylvania

3451 Walnut Street
Philadelphia, PA 19104, USA

{dhillon|myl|ungar}@cis.upenn.edu,
foster@wharton.upenn.edu,
maamouri@ldc.upenn.edu

Abstract

We describe a model for the lexical analy-
sis of Arabic text, using the lists of alterna-
tives supplied by a broad-coverage morpho-
logical analyzer, SAMA, which include sta-
ble lemma IDs that correspond to combina-
tions of broad word sense categories and POS
tags. We break down each of the hundreds
of thousands of possible lexical labels into
its constituent elements, including lemma ID
and part-of-speech. Features are computed
for each lexical token based on its local and
document-level context and used in a novel,
simple, and highly efficient two-stage super-
vised machine learning algorithm that over-
comes the extreme sparsity of label distribu-
tion in the training data. The resulting system
achieves accuracy of 90.6% for its first choice,
and 96.2% for its top two choices, in selecting
among the alternatives provided by the SAMA
lexical analyzer. We have successfully used
this system in applications such as an online
reading helper for intermediate learners of the
Arabic language, and a tool for improving the
productivity of Arabic Treebank annotators.

1 Background and Motivation

This paper presents a methodology for generating
high quality lexical analysis of highly inflected lan-
guages, and demonstrates excellent performance ap-
plying our approach to Arabic. Lexical analysis of
the written form of a language involves resolving,
explicitly or implicitly, several different kinds of am-
biguities. Unfortunately, the usual ways of talking
about this process are also ambiguous, and our gen-
eral approach to the problem, though not unprece-
dented, has uncommon aspects. Therefore, in order

to avoid confusion, we begin by describing how we
define the problem.

In an inflected language with an alphabetic writ-
ing system, a central issue is how to interpret strings
of characters as forms of words. For example, the
English letter-string ‘winds’ will normally be in-
terpreted in one of four different ways, all four
of which involve the sequence of two formatives
wind+s. The stem ‘wind’ might be analyzed as (1) a
noun meaning something like “air in motion”, pro-
nounced [wInd] , which we can associate with an ar-
bitrary but stable identifier like wind n1; (2) a verb
wind v1 derived from that noun, and pronounced the
same way; (3) a verb wind v2 meaning something
like “(cause to) twist”, pronounced [waInd]; or (4)
a noun wind n2 derived from that verb, and pro-
nounced the same way. Each of these “lemmas”, or
dictionary entries, will have several distinguishable
senses, which we may also wish to associate with
stable identifiers. The affix ‘-s’ might be analyzed
as the plural inflection, if the stem is a noun; or as
the third-person singular inflection, if the stem is a
verb.

We see this analysis as conceptually divided into
four parts: 1) Morphological analysis, which rec-
ognizes that the letter-string ‘winds’ might be (per-
haps among other things) wind/N + s/PLURAL or
wind/V + s/3SING; 2) Morphological disambigua-
tion, which involves deciding, for example, that in
the phrase “the four winds”, ‘winds’ is probably a
plural noun, i.e. wind/N + s/PLURAL; 3) Lemma
analysis, which involves recognizing that the stem
wind in ‘winds’ might be any of the four lem-
mas listed above – perhaps with a further listing of
senses or other sub-entries for each of them; and 4)
Lemma disambiguation, deciding, for example, that



the phrase “the four winds” probably involves the
lemma wind n1.

Confusingly, the standard word-analysis tasks in
computational linguistics involve various combina-
tions of pieces of these logically-distinguished op-
erations. Thus, “part of speech (POS) tagging” is
mainly what we’ve called “morphological disam-
biguation”, except that it doesn’t necessarily require
identifying the specific stems and affixes involved.
In some cases, it also may require a small amount of
“lemma disambiguation”, for example to distinguish
a proper noun from a common noun. “Sense disam-
biguation” is basically a form of what we’ve called
“lemma disambiguation”, except that the sense dis-
ambiguation task may assume that the part of speech
is known, and may break down lexical identity more
finely than our system happens to do. “Lemmatiza-
tion” generally refers to a radically simplified form
of “lemma analysis” and “lemma disambiguation”,
where the goal is simply to collapse different in-
flected forms of any similarly-spelled stems, so that
the strings ‘wind’, ‘winds’, ‘winded’, ‘winding’ will
all be treated as instances of the same thing, without
in fact making any attempt to determine the identity
of “lemmas” in the traditional sense of dictionary
entries.

Linguists use the term morphology to include all
aspects of lexical analysis under discussion here.
But in most computational applications, “morpho-
logical analysis” does not include the disambigua-
tion of lemmas, because most morphological ana-
lyzers do not reference a set of stable lemma IDs.
So for the purposes of this paper, we will continue to
discuss lemma analysis and disambiguation as con-
ceptually distinct from morphological analysis and
disambiguation, although, in fact, our system dis-
ambiguates both of these aspects of lexical analysis
at the same time.

The lexical analysis of textual character-strings
is a more complex and consequential problem in
Arabic than it is in English, for several reasons.
First, Arabic inflectional morphology is more com-
plex than English inflectional morphology is. Where
an English verb has five basic forms, for example,
an Arabic verb in principle may have dozens. Sec-
ond, the Arabic orthographic system writes elements
such as prepositions, articles, and possessive pro-
nouns without setting them off by spaces, roughly

as if the English phrase “in a way” were written “in-
away”. This leads to an enormous increase in the
number of distinct “orthographic words”, and a sub-
stantial increase in ambiguity. Third, short vowels
are normally omitted in Arabic text, roughly as if
English “in a way” were written “nway”.

As a result, a whitespace/punctuation-delimited
letter-string in Arabic text typically has many more
alternative analyses than a comparable English
letter-string does, and these analyses have many
more parts, drawn from a much larger vocabulary of
form-classes. While an English “tagger” can spec-
ify the morphosyntactic status of a word by choos-
ing from a few dozen tags, an equivalent level of
detail in Arabic would require thousands of alterna-
tives. Similarly, the number of lemmas that might
play a role in a given letter-sequence is generally
much larger in Arabic than in English.

We start our labeling of Arabic text with the alter-
native analyses provided by SAMA v. 3.1, the Stan-
dard Arabic Morphological Analyzer (Maamouri et
al., 2009). SAMA is an updated version of the ear-
lier Buckwalter analyzers (Buckwalter, 2004), with
a number of significant differences in analysis to
make it compatible with the LDC Arabic Treebank
3-v3.2 (Maamouri et al., 2004). The input to SAMA
is an Arabic orthographic word (a string of letters
delimited by whitespace or punctuation), and the
output of SAMA is a set of alternative analyses, as
shown in Table 1. For a typical word, SAMA pro-
duces approximately a dozen alternative analyses,
but for certain highly ambiguous words it can pro-
duce hundreds of alternatives.

The SAMA analyzer has good coverage; for typ-
ical texts, the correct analysis of an orthographic
word can be found somewhere in SAMA’s list of
alternatives about 95% of the time. However, this
broad coverage comes at a cost; the list of analytic
alternatives must include a long Zipfian tail of rare
or contextually-implausible analyses, which collec-
tively are correct often enough to make a large con-
tribution to the coverage statistics. Furthermore,
SAMA’s long lists of alternative analyses are not
evaluated or ordered in terms of overall or contex-
tual plausibility. This makes the results less useful
in most practical applications.

Our goal is to rank these alternative analyses so
that the correct answer is as near to the top of the list



Token Lemma Vocalization Segmentation Morphology Gloss
yHlm Halam-u 1 yaHolumu ya + Holum +

u
IV3MS + IV + IV-
SUFF MOOD:I

he / it + dream + [ind.]

yHlm Halam-u 1 yaHoluma ya + Holum +
a

IV3MS + IV + IV-
SUFF MOOD:S

he / it + dream + [sub.]

yHlm Halum-u 1 yaHolumo ya + Holum +
o

IV3MS + IV + IV-
SUFF MOOD:J

he / it + be gentle + [jus.]

qbl qabil-a 1 qabila qabil + a PV + PV-
SUFF SUBJ:3MS

accept/receive/approve +
he/it [verb]

qbl qabol 1 qabol qabol NOUN Before

Table 1: Partial output of SAMA for yHlm and qbl. On average, every token produces more than 10 such analyses

as possible. Despite some risk of confusion, we’ll
refer to SAMA’s list of alternative analyses for an
orthographic word as potential labels for that word.
And despite a greater risk of confusion, we’ll refer to
the assignment of probabilities to the set of SAMA
labels for a particular Arabic word in a particular
textual context as tagging, by analogy to the oper-
ation of a stochastic part-of-speech tagger, which
similarly assigns probabilities to the set of labels
available for a word in textual context.

Although our algorithms have been developed for
the particular case of Arabic and the particular set
of lexical-analysis labels produced by SAMA, they
should be applicable without modification to the sets
of labels produced by any broad-coverage lexical
analyzer for the orthographic words of any highly-
inflected language.

In choosing our approach, we have been moti-
vated by two specific applications. One applica-
tion aims to help learners of Arabic in reading text,
by offering a choice of English glosses with asso-
ciated Arabic morphological analyses and vocaliza-
tions. SAMA’s excellent coverage is an important
basis for this help; but SAMA’s long, unranked list
of alternative analyses for a particular letter-string,
where many analyses may involve rare words or al-
ternatives that are completely implausible in the con-
text, will be confusing at best for a learner. It is
much more helpful for the list to be ranked so that
the correct answer is almost always near the top, and
is usually one of the top two or three alternatives.

In our second application, this same sort of rank-
ing is also helpful for the linguistically expert native
speakers who do Arabic Treebank analysis. These

annotators understand the text without difficulty, but
find it time-consuming and fatiguing to scan a long
list of rare or contextually-implausible alternatives
for the correct SAMA output. Their work is faster
and more accurate if they start with a list that is
ranked accurately in order of contextual plausibility.

Other applications are also possible, such as vo-
calization of Arabic text for text-to-speech synthe-
sis, or lexical analysis for Arabic parsing. However,
our initial goals have been to rank the list of SAMA
outputs for human users.

We note in passing that the existence of set of sta-
ble “lemma IDs” is an unusual feature of SAMA,
which in our opinion ought to be emulated by ap-
proaches to lexical analysis in other languages. The
lack of such stable lemma IDs has helped to disguise
the fact that without lemma analysis and disam-
biguation, morphological analyses and disambigua-
tion is only a partial solution to the problem of lexi-
cal analysis.

In principle, it is obvious that lemma disambigua-
tion and morphological disambiguation are mutually
beneficial. If we know the answer to one of the ques-
tions, the other one is easier to answer. However,
these two tasks require rather different sets of con-
textual features. Lemma disambiguation is similar
to the problem of word-sense disambiguation – on
some definitions, they are identical – and as a re-
sult, it benefits from paragraph-level and document-
level bag-of-words attributes that help to character-
ize what the text is “about” and therefore which lem-
mas are more likely to play a role in it. In contrast,
morphological disambiguation mainly depends on
features of nearby words, which help to character-



ize how inflected forms of these lemmas might fit
into local phrasal structures.

2 Problem and Methodology

Consider a collection of tokens (observations), ti, re-
ferred to by index i ∈ {1, . . . , n}, where each token
is associated with a set of p features, xij , for the jth

feature, and a label, li, which is a combination of
a lemma and a morphological analysis. We use in-
dicator functions yik to indicate whether or not the
kth label for the ith token is present. We represent
the complete set of features and labels for the en-
tire training data using matrix notation as X and Y ,
respectively. Our goal is to predict the label l (or
equivalently, the vector y for a given feature vector
x.

A standard linear regression model of this prob-
lem would be

y = xβ + ε (1)

The standard linear regression estimate of β (ig-
noring, for simplicity the fact that the ys are 0/1) is:

β̂ = (XT
trainXtrain)−1XT

trainYtrain (2)

where Ytrain is an n×h matrix containing 0s and
1s indicating whether or not each of the h possible
labels is the correct label (li) for each of the n tokens
ti, Xtrain is an n × p matrix of context features for
each of the n tokens, the coefficients β̂ are p× h.

However, this is a large, sparse, multiple label
problem, and the above formulation is neither statis-
tically nor computationally efficient. Each observa-
tion (x,y) consists of thousands of features associ-
ated with thousands of potential labels, almost all of
which are zero. Worse, the matrix of coefficients β,
to be estimated is large (p× h) and one should thus
use some sort of transfer learning to share strength
across the different labels.

We present a novel principled and highly compu-
tationally efficient method of estimating this multi-
label model. We use a two stage procedure, first
using a subset (Xtrain1, Ytrain1) of training data
to give a fast approximate estimate of β; we then
use a second smaller subset of the training data
(Xtrain2, Ytrain2,) to “correct” these estimates in a
way that we will show can be viewed as a spe-
cialized shrinkage. Our first stage estimation ap-
proximates β, but avoids the expensive computa-

tion of (XT
trainXtrain)−1. Our second stage corrects

(shrinks) these initial estimates in a manner special-
ized to this problem. The second stage takes ad-
vantage of the fact that we only need to consider
those candidate labels produced by SAMA. Thus,
only dozens of the thousands of possible labels are
considered for each token.

We now present our algorithm. We start with a
corpus D of documents d of labeled Arabic text. As
described above, each token, ti is associated with a
set of features characterizing its context, computed
from the other words in the same document, and a la-
bel, li = (lemmai,morphologyi), which is a combi-
nation of a lemma and a morphological analysis. As
described below, we introduce a novel factorization
of the morphology into 15 different components.

Our estimation algorithm, shown in Algorithm 1,
has two stages. We partition the training corpus into
two subsets, one of which (Xtrain1) is used to es-
timate the coefficients βs and the other of which
(Xtrain2) is used to optimally “shrink” these coeffi-
cient estimates to reduce variance and prevent over-
fitting due to data sparsity.

For the first stage of our estimation procedure, we
simplify the estimate of the (β) matrix (Equation 2)
to avoid the inversion of the very high dimensional
(p×p) matrix (XTX) by approximating (XTX) by
its diagonal, Var(X), the inverse of which is trivial
to compute; i.e. we estimate β using

β̂ = Var(Xtrain1)−1XT
train1Ytrain1 (3)

For the second stage, we assume that the coeffi-
cients for each feature can be shrunk differently, but
that coefficients for each feature should be shrunk
the same regardless of what label they are predict-
ing. Thus, for a given observation we predict:

ĝik =
p∑

j=1

wj β̂jkxij (4)

where the weightswj indicate how much to shrink
each of the p features.

In practice, we fold the variance of each of the j
features into the weight, giving a slightly modified
equation:

ĝik =
p∑

j=1

αjβ
∗
jkxij (5)



where β∗ = XT
train1Ytrain1 is just a matrix of the

counts of how often each context feature shows up
with each label in the first training set. The vec-
tor α, which we will estimate by regression, is just
the shrinkage weightsw rescaled by the feature vari-
ance.

Note that the formation here is different from the
first stage. Instead of having each observation be
a token, we now let each observation be a (token,
label) pair, but only include those labels that were
output by SAMA. For a given token ti and poten-
tial label lk, our goal is to approximate the indica-
tor function g(i, k), which is 1 if the kth label of
token ti is present, and 0 otherwise. We find candi-
date labels using a morphological analyzer (namely
SAMA), which returns a set of possible candidate
labels, say C(t), for each Arabic token t. Our pre-
dicted label for ti is then argmaxk∈C(ti)

g(i, k).
The regression model for learning the weights αj

in the second stage thus has a row for each label
g(i, k) associated with a SAMA candidate for each
token i = ntrain1+1 . . . ntrain2 in the second train-
ing set. The value of g(i, k) is predicted as a func-
tion of the feature vector zijk = β∗jkxij .

The shrinkage coefficients, αj , could be estimated
from theory, using a version of James-Stein shrink-
age (James and Stein, 1961), but in practice, superior
results are obtained by estimating them empirically.
Since there are only p of them (unlike the p ∗ h βs),
a relatively small training set is sufficient. We found
that regression-SVMs work slightly better than lin-
ear regression and significantly better than standard
classification SVMs for this problem.

Prediction is then done in the obvious way by tak-
ing the tokens in a test corpusDtest, generating con-
text features and candidate SAMA labels for each
token ti, and selected the candidate label with the
highest score ĝ(i, k) that we set out to learn. More
formally, The model parameters β∗ and α produced
by the algorithm allow one to estimate the most
likely label for a new token ti out of a set of can-
didate labels C(ti) using

kpred = argmaxk∈C(ti)

p∑
j=1

αjβ
∗
jkxij (6)

The most expensive part of the procedure is es-
timating β∗, which requires for each token in cor-

Algorithm 1 Training algorithm.
Input: A training corpusDtrain of n observations
(Xtrain, Ytrain)
PartitionDtrain into two sets,D1 andD2, of sizes
ntrain1 and ntrain2 = n− ntrain1 observations
// Using D1, estimate β∗

β∗jk =
∑ntrain1

i=1 xijyik for the jth feature and kth

label
// Using D2, estimate αj

// Generate new “features” Z and the true labels
g(i, k) for each of the SAMA candidate labels for
each of the tokens in D2

zijk = β∗jkxij for i in i = ntrain1 + 1 . . . ntrain2

Estimate αj for the above (feature,label) pairs
(zijk, g(i, k)) using Regression SVMs
Output: α and β∗

pus D1, (a subset of D), finding the co-occurrence
frequencies of each label element (a lemma, or a
part of the morphological segmentation) with the
target token and jointly with the token and with
other tokens or characters in the context of the to-
ken of interest. For example, given an Arabic to-
ken, “yHlm”, we count what fraction of the time
it is associated with each lemma (e.g. Halam-
u 1), count(lemma=Halam-u 1, token=yHlm) and
each segment (e.g. “ya”), count(segment=ya, to-
ken=yHlm). (Of course, most tokens never show up
with most lemmas or segments; this is not a prob-
lem.) We also find the base rates of the components
of the labels (e.g., count(lemma=Halam-u 1), and
what fraction of the time the label shows up in vari-
ous contexts, e.g. count(lemma=Halam-u 1, previ-
ous token = yHlm). We describe these features in
more detail below.

3 Features and Labels used for Training

Our approach to tagging Arabic differs from conven-
tional approaches in the two-part shrinkage-based
method used, and in the choice of both features and
labels used in our model. For features, we study
both local context variables, as described above, and
document-level word frequencies. For the labels, the
key question is what labels are included and how
they are factored. Standard “taggers” work by doing
an n-way classification of all the alternatives, which
is not feasible here due to the thousands of possi-



ble labels. Standard approaches such as Conditional
Random Fields (CRFs) are intractable with so many
labels. Moreover, few if any taggers do any lemma
disambiguation; that is partly because one must start
with some standard inventory of lemmas, which are
not available for most languages, perhaps because
the importance of lemma disambiguation has been
underestimated.

We make a couple of innovations to deal with
these issues. First, we perform lemma disambigua-
tion in addition to “tagging”. As mentioned above,
lemmas and morphological information are not in-
dependent; the choice of lemma often influences
morphology and vice versa. For example, Table 1
contains two analyses for the word qbl. For the first
analysis, where the lemma is qabil-a 1 and the gloss
is accept/receive/approve + he/it [verb], the word is
a verb. However, for the second analysis, where the
lemma is qabol 1 and the gloss is before, the word
is a noun.

Simultaneous lemma disambiguation and tagging
introduces additional complexity: An analysis of
ATB and SAMA shows that there are approximately
2,200 possible morphological analyses (“tags”) and
40,000 possible lemmas; even accounting for the
fact that most combinations of lemmas and morpho-
logical analyses don’t occur, the size of the label
space is still in the order of tens of thousands. To
deal with data sparsity, our second innovation is to
factor the labels. We factor each label l into a set of
16 label elements (LEs). These include lemmas, as
well as morphological elements such as basic part-
of-speech, suffix, gender, number, mood, etc. These
are explained in detail below. Thus, since each la-
bel l is a set of 15 categorical variables, each y in
the first learning stage is actually a vector with 16
nonzero components and thousands of zeros. Since
we do simultaneous estimation of the entire set of
label elements, the value g(i, k) being predicted in
the second learning phase is 1 if the entire label set
is correct, and zero otherwise. We do not learn sep-
arate models for each label.

3.1 Label Elements (LEs)

The fact that there are tens of thousands of possible
labels presents the problem of extreme sparsity of
label distribution in the training data. We find that a
model that estimates coefficients β∗ to predict a sin-

LE Description
lemma Lemma
pre1 Closer prefix
pre2 Farther prefix
det Determiner
pos Basic POS
dpos Additional data on basic pos
suf Suffix

perpos Person (basic pos)
numpos Number (basic pos)
genpos Gender (basic pos)
persuf Person (suffix)
numsuf Number (suffix)
gensuf Gender (suffix)
mood Mood of verb
pron Pronoun suffix

Table 2: Label Elements (LEs). Examples of additional
data on basic POS include whether a noun is proper or
common, whether a verb is transitive or not, etc. Both
the basic POS and its suffix may have person, gender and
number data.

gle label (a label being in the Cartesian product of
the set of label elements) yields poor performance.
Therefore, as just mentioned, we factor each label
l into a set of label elements (LEs), and learn the
correlations β∗ between features and label elements,
rather than features and entire label sets. This re-
duces, but does not come close to eliminating, the
problem sparsity. A complete list of these LEs and
their possible values is detailed in Table 2.

3.2 Features
3.2.1 Local Context Features

We take (t, l) pairs from D2, and for each such
pair generate features Z based on co-occurrence
statistics β∗ in D1, as mentioned in Algorithm 2.
These statistics include unigram co-occurrence fre-
quencies of each label with the target token and bi-
gram co-occurrence of the label with the token and
with other tokens or characters in the context of the
target token. We define them formally in Table 3.
Let Zbaseline denote the set of all such basic features
based on the local context statistics of the target to-
ken, namely the words and letters preceding and fol-
lowing it. We will use this set to create a baseline
model.



Statistic Description
Freq countD1(t, l)

PrevWord countD1(t, l, t−1)
NextWord countD1(t, l, t+1)
PreviLetter countD1(t, l, first letter(t−1))
NextiLetter countD1(t, l, first letter(t+1)
PrevfLetter countD1(t, l, last letter(t−1)
NextfLetter countD1(t, l, last letter(t+1)

Table 3: Co-occurrence statistics β∗. We use these to
generate feature sets for our regression SVMs.

For each label element (LE) e, we define a set of
features Ze similar to Zbaseline; these features are
based on co-occurrence frequencies of the particular
LE e, not the entire label l.

Finally, we define an aggregate feature set Zaggr

as follows:

Zaggr = Zbaseline

⋃
{Ze} (7)

where e ∈ {lemma, pre1, pre2, det, pos, dpos,
suf, perpos, numpos, genpos, persuf, numsuf, gensuf,
mood, pron}.

3.2.2 Document Level Features

When trying to predict the lemma, it is useful to
include not just the words and characters immedi-
ately adjacent to the target token, but also the all the
words in the document. These words capture the
“topic” of the document, and help to disambiguate
different lemmas, which tend to be used or not used
based on the topic being discussed, similarly to the
way that word sense disambiguation systems in En-
glish sometimes use the “bag of words” the docu-
ment to disambiguate, for example a “bank” for de-
positing money from a “bank” of a river. More pre-
cisely, we augment the features for each target token
with the counts of each word in the document (the
“term frequency” tf) in which the token occurs with
a given label.

Zfull = Zaggr

⋃
Ztf (8)

This setZfull is our final feature set. We useZfull

to train an SVM model Mfull; this is our final pre-
dictive model.

3.3 Corpora used for Training and Testing
We use three modules of the Penn Arabic Tree-
bank (ATB) (Maamouri et al., 2004), namely ATB1,
ATB2 and ATB3 as our corpus of labeled Ara-
bic text, D. Each ATB module is a collection
of newswire data from a particular agency. ATB1
uses the Associated Press as a source, ATB2 uses
Ummah, and ATB3 uses Annahar. D contains a total
of 1,835 documents, accounting for approximately
350,000 words. We construct the training and test-
ing setsDtrain andDtest fromD using 10-fold cross
validation, and we constructD1 andD2 fromDtrain

by randomly performing a 9:1 split.
As mentioned earlier, we use the SAMA mor-

phological analyzer to obtain candidate labels C(t)
for each token t while training and testing an SVM
model on D2 and Dtest respectively. A sample out-
put of SAMA is shown in Table 1. To improve cov-
erage, we also add to C(t) all the labels l seen for t
in D1. We find that doing so improves coverage to
98%. This is an upper bound on the accuracy of our
model.

C(t) = SAMA(t)
⋃

{l|(t, l) ∈ D1} (9)

4 Results

We use two metrics of accuracy: A1, which mea-
sures the percentage of tokens for which the model
assigns the highest score to the correct label or LE
value (or E1= 100−A1, the corresponding percent-
age error), and A2, which measures the percentage
of tokens for which the correct label or LE value
is one of the two highest ranked choices returned
by the model (or E2 = 100 − A2). We test our
modelMfull onDtest and achieve A1 and A2 scores
of 90.6% and 96.2% respectively. The accuracy
achieved by our Mfull model is, to the best of our
knowledge, higher than prior approaches have been
able to achieve so far for the problem of combined
morphological and lemma disambiguation. This is
all the more impressive considering that the upper
bound on accuracy for our model is 98% because,
as described above, our set of candidate labels is in-
complete.

In order to analyze how well different LEs can be
predicted, we train an SVM model Me for each LE
e using the feature set Ze, and test all such models



on Dtest. The results for all the LEs are reported in
the form of error percentages E1 and E2 in Table 4.

Model E1 E2 Model E1 E2
Mlemma 11.1 4.9 Mpre1 1.9 1.4
Mpre2 0.2 0 Mdet 0.7 0.1
Mpos 23.4 4.0 Mdpos 10.3 1.9
Msuf 7.6 2.5 Mperpos 3.0 0.1
Mnumpos 3.2 0.2 Mgenpos 1.8 0.1
Mpersuf 3.2 0.1 Mnumsuf 8.2 0.5
Mgensuf 11.6 0.4 Mmood 1.6 1.4
Mpron 1.8 0.6 Mcase 14.7 5.9
Mfull 9.4 3.8 - - -

Table 4: Results of Me for each LE e. Note: The results
reported are 10 fold cross validation test accuracies and
no parameters have been tuned on them.

A comparison of the results for Mfull with the
results for Mlemma and Mpos is particularly infor-
mative. We see that Mfull is able to achieve a sub-
stantially lower E1 error score (9.4%) than Mlemma

(11.1%) and Mpos (23.4%); in other words, we find
that our full model is able to predict lemmas and ba-
sic parts-of-speech more accurately than the individ-
ual models for each of these elements.

We examine the effect of varying the size of D2,
i.e. the number of SVM training instances, on the
performance of Mfull on Dtest, and find that with
increasing sizes of D2, E1 reduces only slightly
from 9.5% to 9.4%, and shows no improvement
thereafter. We also find that the use of document-
level features in Mlemma reduces E1 and E2 per-
centages for Mlemma by 5.7% and 3.2% respec-
tively.

4.1 Comparison to Alternate Approaches

4.1.1 Structured Prediction Models
Preliminary experiments showed that knowing the

predicted labels (lemma + morphology) of the sur-
rounding words can slightly improve the predic-
tive accuracy of our model. To further investi-
gate this effect, we tried running experiments us-
ing different structured models, namely CRF (Con-
ditional Random Fields) (Lafferty et al., 2001),
(Structured) MIRA (Margin Infused Relaxation Al-
gorithm) (Crammer et al., 2006) and Structured
Perceptron (Collins, 2002). We used linear chain

CRFs as implemented in MALLET Toolbox (Mc-
Callum, 2001) and for Structured MIRA and Per-
ceptron we used their implementations from EDLIN
Toolbox (Ganchev and Georgiev, 2009). However,
given the vast label space of our problem, running
these methods proved infeasible. The time complex-
ity of these methods scales badly with the number of
labels; It took a week to train a linear chain CRF
for only ∼ 50 labels and though MIRA and Per-
ceptron are online algorithms, they also become in-
tractable beyond a few hundred labels. Since our
label space contains combinations of lemmas and
morphologies, so even after factoring, the dimension
of the label space is in the order of thousands.

We also tried a naı̈ve version (two-pass approxi-
mation) of these structured models. In addition to
the features in Zfull, we include the predicted la-
bels for the tokens preceding and following the tar-
get token as features. This new model is not only
slow to train, but also achieves only slightly lower
error rates (1.2% lower E1 and 1.0% lower E2) than
Mfull. This provides an upper bound on the bene-
fit of using the more complex structured models, and
suggests that given their computational demands our
(unstructured) model Mfull is a better choice.

4.1.2 MADA
(Habash and Rambow, 2005) perform morpho-

logical disambiguation using a morphological ana-
lyzer. (Roth et al., 2008) augment this with lemma
disambiguation; they call their system MADA. Our
work differs from theirs in a number of respects.
Firstly, they don’t use the two step regression proce-
dure that we use. Secondly, they use only “unigram”
features. Also, they do not learn a single model from
a feature set based on labels and LEs; instead, they
combine models for individual elements by using
weighted agreement. We trained and tested MADA
v2.32 using its full feature set on the same Dtrain

andDtest. We should point out that this is not an ex-
act comparison, since MADA uses the older Buck-
walter morphological analyzer.1

4.1.3 Other Alternatives
Unfactored Labels: To illustrate the benefit ob-

tained by breaking down each label l into

1A new version of MADA was released very close to the
submission deadline for this conference.



LEs, we contrast the performance of our Mfull

model to an SVM model Mbaseline trained us-
ing only the feature set Zbaseline, which only
contains features based on entire labels, those
based on individual LEs.

Independent lemma and morphology prediction:
Another alternative approach is to pre-
dict lemmas and morphological analyses
separately. We construct a feature set
Zlemma′ = Zfull − Zlemma and train an SVM
model Mlemma′ using this feature set. Labels
are then predicted by simply combining the
results predicted independently by Mlemma

and Mlemma′ . Let Mind denote this approach.

Unigram Features: Finally, we also consider a
context-less approach, i.e. using only “uni-
gram” features for labels as well as LEs. We
call this feature set Zuni, and the correspond-
ing SVM model Muni.

The results of these various models, along with
those of Mfull are summarized in Table 5. We see
thatMfull has roughly half the error rate of the state-
of-the-art MADA system.

Model E1 E2
Mbaseline 13.6 9.1
Mind 18.7 6.0
Muni 11.6 6.4
Mcheat 8.2 2.8
MADA 16.9 12.6
Mfull 9.4 3.8

Table 5: Percent error rates of alternative approaches.
Note: The results reported are 10 fold cross validation
test accuracies and no parameters have been tuned on
them. We used same train-test splits for all the datasets.

5 Related Work

(Hajic, 2000) show that for highly inflectional
languages, the use of a morphological analyzer
improves accuracy of disambiguation. (Diab et
al., 2004) perform tokenization, POS tagging
and base phrase chunking using an SVM based
learner. (Ahmed and Nürnberger, 2008) perform
word-sense disambiguation using a Naive Bayesian

model and rely on parallel corpora and match-
ing schemes instead of a morphological ana-
lyzer. (Kulick, 2010) perform simultaneous tok-
enization and part-of-speech tagging for Arabic by
separating closed and open-class items and focus-
ing on the likelihood of possible stems of open-
class words. (Mohamed and Kübler, 2010) present
a hybrid method between word-based and segment-
based POS tagging for Arabic and report good re-
sults. (Toutanova and Cherry, 2009) perform joint
lemmatization and part-of-speech tagging for En-
glish, Bulgarian, Czech and Slovene, but they do
not use the two step estimation-shrinkage model de-
scribed in this paper; nor do they factor labels. The
idea of joint lemmatization and part-of-speech tag-
ging has also been discussed in the context of Hun-
garian in (Kornai, 1994).

A substantial amount of relevant work has been
done previously for Hebrew. (Adler and Elhadad,
2006) perform Hebrew morphological disambigua-
tion using an unsupervised morpheme-based HMM,
but they report lower scores than those achieved by
our model. Moreover, their analysis doesn’t include
lemma IDs, which is a novelty of our model. (Gold-
berg et al., 2008) extend the work of (Adler and El-
hadad, 2006) by using an EM algorithm, and achieve
an accuracy of 88% for full morphological analy-
sis, but again, this does not include lemma IDs. To
the best of our knowledge,there is no existing re-
search for Hebrew that does what we did for Arabic,
namely to use simultaneous lemma and morpholog-
ical disambiguation to improve both. (Dinur et al.,
2009) show that prepositions and function words can
be accurately segmented using unsupervised meth-
ods. However, by using this method as a preprocess-
ing step, we would lose the power of a simultaneous
solution for these problems. Our method is closer in
style to a CRF, giving much of the accuracy gains of
simultaneous solution, while being about 4 orders of
magnitude easier to train.

We believe that our use of factored labels is novel
for the problem of simultaneous lemma and mor-
phological disambiguation; however, (Smith et al.,
2005) and (Hatori et al., 2008) have previously
made use of features based on parts of labels in
CRF models for morphological disambiguation and
word-sense disambiguation respectively. Also, we
note that there is a similarity between our two-stage



machine learning approach and log-linear models in
machine translation that break the data in two parts,
estimating log-probabilities of generative models
from one part, and discriminatively re-weighting the
models using the second part.

6 Conclusions

We introduced a new approach to accurately predict
labels consisting of both lemmas and morphologi-
cal analyses for Arabic text. We obtained an accu-
racy of over 90% – substantially higher than current
state-of-the-art systems. Key to our success is the
factoring of labels into lemma and a large set of mor-
phosyntactic elements, and the use of an algorithm
that computes a simple initial estimate of the coef-
ficient relating each contextual feature to each la-
bel element (simply by counting co-occurrence) and
then regularizes these features by shrinking each of
the coefficients for each feature by an amount deter-
mined by supervised learning using only the candi-
date label sets produced by SAMA.

We also showed that using features of word n-
grams is preferable to using features of only individ-
ual tokens of data. Finally, we showed that a model
using a full feature set based on labels as well as
factored components of labels, which we call label
elements (LEs) works better than a model created
by combining individual models for each LE. We
believe that the approach we have used to create our
model can be successfully applied not just to Arabic
but also to other languages such as Turkish, Hungar-
ian and Finnish that have highly inflectional mor-
phology. The current accuracy of of our model, get-
ting the correct answer among the top two choices
96.2% of the time is high enough to be highly use-
ful for tasks such as aiding the manual annotation
of Arabic text; a more complete automation would
require that accuracy for the single top choice.

Acknowledgments

We would like to thank the anonymous reviewers for
their comments and suggestions.

References
Meni Adler and Michael Elhadad. 2006. An Unsuper-

vised Morpheme-Based HMM for Hebrew Morpho-
logical Disambiguation. In Proceedings of the 21st

International Conference on Computational Linguis-
tics and the 44th annual meeting of the Association for
Computational Linguistics.

Farag Ahmed and Andreas Nürnberger. 2008. Ara-
bic/English Word Translation Disambiguation using
Parallel Corpora and Matching Schemes. In Proceed-
ings of EAMT’08, Hamburg, Germany.

Tim Buckwalter. 2004. Buckwalter Arabic Morphologi-
cal Analyzer version 2.0.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. In Proceedings of
EMNLP’02.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online Passive-
Aggressive Algorithms. Journal of Machine Learning
Research, 7:551–585.

Mona Diab, Kadri Hacioglu, and Daniel Jurafsky. 2004.
Automatic Tagging of Arabic text: From Raw Text to
Base Phrase Chunks. In Proceedings of the 5th Meet-
ing of the North American Chapter of the Associa-
tion for Computational Linguistics/Human Language
Technologies Conference (HLT-NAACL’04).

Elad Dinur, Dmitry Davidov, and Ari Rappoport. 2009.
Unsupervised Concept Discovery in Hebrew Using
Simple Unsupervised Word Prefix Segmentation for
Hebrew and Arabic. In Proceedings of the EACL 2009
Workshop on Computational Approaches to Semitic
Languages.

Kuzman Ganchev and Georgi Georgiev. 2009. Edlin:
An Easy to Read Linear Learning Framework. In Pro-
ceedings of RANLP’09.

Yoav Goldberg, Meni Adler, and Michael Elhadad. 2008.
EM Can Find Pretty Good HMM POS-Taggers (When
Given a Good Start)*. In Proceedings of ACL’08.

Nizar Habash and Owen Rambow. 2005. Arabic Tok-
enization, Part-of-Speech Tagging and Morphological
Disambiguation in One Fell Swoop. In Proceedings of
ACL’05, Ann Arbor, MI, USA.

Jan Hajic. 2000. Morphological Tagging: Data vs. Dic-
tionaries. In Proceedings of the 1st Meeting of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL’00).

Jun Hatori, Yusuke Miyao, and Jun’ichi Tsujii. 2008.
Word Sense Disambiguation for All Words using Tree-
Structured Conditional Random Fields. In Proceed-
ings of COLing’08.

W. James and Charles Stein. 1961. Estimation with
Quadratic Loss. In Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probabil-
ity, Volume 1.

András Kornai. 1994. On Hungarian morphology (Lin-
guistica, Series A: Studia et Dissertationes 14). Lin-



guistics Institute of Hungarian Academy of Sciences,
Budapest.

Seth Kulick. 2010. Simultaneous Tokenization and Part-
of-Speech Tagging for Arabic without a Morphologi-
cal Analyzer. In Proceedings of ACL’10.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional Random Fields: Proba-
bilistic Models for Segmenting and Labeling Sequence
Data. In Proceedings of ICML’01, pages 282–289.

Mohamed Maamouri, Ann Bies, and Tim Buckwalter.
2004. The Penn Arabic Treebank: Building a Large
Scale Annotated Arabic Corpus. In Proceedings of
NEMLAR Conference on Arabic Language Resources
and Tools.

Mohamed Maamouri, David Graff, Basma Bouziri, Son-
dos Krouna, and Seth Kulick. 2009. LDC Standard
Arabic Morphological Analyzer (SAMA) v. 3.0.

Andrew McCallum, 2001. MALLET: A Machine Learn-
ing for Language Toolkit. Software available at
http://mallet.cs.umass.edu.

Emad Mohamed and Sandra Kübler. 2010. Arabic Part
of Speech Tagging. In Proceedings of LREC’10.

Ryan Roth, Owen Rambow, Nizar Habash, Mona Diab,
and Cynthia Rudin. 2008. Arabic Morphological Tag-
ging, Diacritization, and Lemmatization Using Lex-
eme Models and Feature Ranking. In Proceedings of
ACL’08, Columbus, Ohio, USA.

Noah A. Smith, David A. Smith, and Roy W. Tromble.
2005. Context-Based Morphological Disambiguation
with Random Fields*. In Proceedings of Human
Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing
(HLT/EMNLP).

Kristina Toutanova and Colin Cherry. 2009. A Global
Model for Joint Lemmatization and Part-of-Speech
Prediction. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Pro-
cessing, pages 486–494.


